
Received: 2 April 2025 / Revised: 30 June 2025 / Accepted: 4 August 2025
© The Author(s) 2025

Editors: Riccardo Guidotti, Anna Monreale, Dino Pedreschi.

	
 Fouad Alkhoury
alkhoury@cs.uni-bonn.de

Sebastian Buschjäger
sebastian.buschjaeger@tu-dortmund.de

Pascal Welke
p.welke@lancaster.ac.uk

1	 University of Bonn, Bonn, Germany
2	 Technical University of Dortmund, Dortmund, Germany
3	 Lancaster University Leipzig, Leipzig, Germany
4	 TU Wien, Vienna, Austria
5	 Lamarr Institute for Machine Learning and Artificial Intelligence, Bonn, Germany

Splitting stump forests: tree ensemble compression for edge
devices (extended version)

Fouad Alkhoury1,5 · Sebastian Buschjäger2,5 · Pascal Welke3,4

Machine Learning (2025) 114:219
https://doi.org/10.1007/s10994-025-06866-2

Abstract
We introduce Splitting Stump Forests—small ensembles of weak learners extracted from
a trained random forest. The high memory consumption of random forests renders them
unfit for resource-constrained devices. We show empirically that we can significantly re-
duce the model size and inference time by selecting nodes that evenly split the arriving
training data and applying a linear model on the resulting representation. Our extensive
empirical evaluation indicates that Splitting Stump Forests outperform random forests and
state-of-the-art compression methods on memory-limited embedded devices.

Keywords  Ensemble compression · Random forests · Edge devices

1  Introduction

The global count of Internet of Things (IoT) devices is expected to reach approximately 32
billion units by 2030 (Vailshery, 2024). Many IoT devices require real-time decisions and
therefore include limited computing capabilities (Merenda et al., 2020). Running machine

1 3

https://doi.org/10.1007/s10994-025-06866-2
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-025-06866-2&domain=pdf&date_stamp=2025-8-27

Machine Learning (2025) 114:219

learning models directly on embedded devices is increasingly popular due to improvements
in reliability, affordability, and energy efficiency (Filho et al., 2022). Local models also
reduce or even eliminate the need for transferring data to cloud servers when connectiv-
ity, bandwidth consumption, communication costs, network latency, or privacy are relevant
concerns (Hua et al., 2023; Murshed et al., 2021).

Ensemble models can outperform the predictive performance of individual classifiers in
many machine learning tasks (Dietterich, 2000; Sagi & Rokach, 2018). However, ensemble
models combine multiple base models, resulting in high memory consumption. The model
size is also a primary determinant of inference time, an aspect equally important as model
accuracy in real-time applications. IoT devices, however, typically contain resource-con-
strained microcontrollers with limited flash memory, ranging from a few Kbytes to a maxi-
mum of a few Mbytes, as shown in Table 1. As a result, the best-performing ensemble model
is often too large and too slow to be deployed for real-time applications in IoT devices.
This work presents small tree ensemble models that provide responsive and highly accurate
predictions. Decision trees efficiently represent sequences of if-else conditions and can be
compiled to run efficiently on embedded devices (Buschjäger & Morik, 2017, 2021). We
revisit these models and propose a lossy compression scheme for their ensembles, ran-
dom forests. A random forest reduces the variance of the predictions compared to a single
decision tree (Breiman, 2001). However, having only a few small trees in a random forest
can hinder predictive performance, while large random forests pose a significant challenge
for resource-limited devices. Our experiments show that high-performing random forests
often exceed 100K nodes. As a result, these models may require more than 5–10 Mbytes of
memory even in very compact implementations (Buschjäger & Morik, 2021).

We propose a novel method to create a new, compressed ensemble from a large random
forest model, often comprising hundreds of thousands of nodes. To enable compression,
the approach extracts a subset of test nodes from a trained random forest to build a smaller
ensemble of splitting stumps with a total size of only a few Kbytes. Our approach combines
the supervised selection of splits in the training of random forests with an unsupervised
measure of balance on the training data and an optional quantization step of the split nodes.
We argue that this reduces the tendency to overfit the training data. The final model trans-
forms the input data into multi-hot encoding and trains a linear classifier to map the novel
representation to the target domain.

We evaluate our proposed method twofold: First, we show in an extensive experimental
evaluation on various datasets the superiority of splitting stump forests over random forests
and state-of-the-art competitive ensemble compression techniques in terms of compression
rate, inference time, and predictive performance. Second, we highlight a real-world scenario
where we deploy our SSF models to a small Arduino Mega-2560-R device, showcasing its
applicability to real-world devices. Moreover, our experiments demonstrate that the selected
test nodes are informative and not accidental. This article proceeds as follows: We review

Microcontroller unit Flash memory
Arduino Mega-2560-R 8 KB
ATmega169P 16 KB
Arduino Nano 26-32 KB
Arduino Uno 32 KB
Atmel ATSAM3S2AA-AU 64 KB
Arduino Mega 256 KB

Table 1  Flash Memory on differ-
ent microcontroller units (Branco
et al., 2019; Atmel, 2016a, b)

1 3

 219   Page 2 of 26

Machine Learning (2025) 114:219

related work in Section 2. Section 4 provides a detailed description of our method. Section 5
describes our empirical evaluation of SSFs. Section 6 presents the Arduino implementation
before Section 7 concludes. Code for splitting stump forests is on github1.

This article is an extended version of Alkhoury and Welke (2024). In the present version,
we introduce the quantization of the split values, which further reduces the size of the com-
pressed model. Furthermore, we extend our work with an implementation of SSFs for the
Arduino Mega-2560-R. Both extensions warrant additional experiments.

2  Background

Our proposed random forest compression technique can be alternatively viewed as a model
compression or representation learning approach. Deploying models on embedded devices
requires special care. We now review related work in these fields.

2.1  Ensemble compression

The existing methods for ensemble size reduction can be categorized into black box and
white box approaches. Black box approaches do not assume any particular model architec-
ture. Instead, they work on the set of models in an ensemble without changing individual
base models. White box approaches update base models, e.g., by pruning individual nodes
of decision trees in a random forest. We focus our discussion on white box approaches.

Seeking an optimal sub-ensemble within large random forests is often impractical. In
general, identifying an optimal subset of classifiers with the best generalization perfor-
mance is an NP-complete problem (Partalas et al., 2009). Thus, most approaches identify
a sub-ensemble with near-optimal performance. Several studies have been conducted on
the pruning of machine learning models (Li et al., 2017). Moreover, considerable efforts
concentrated on identifying subsets of random forest nodes that can match the original
forest’s accuracy. Peterson and Martinez (2009) introduced a post-training technique that
stores unique subtrees and combines redundant nodes into “parallel nodes” while maintain-
ing the overall behavior. Buschjäger and Morik (2023) introduced an innovative method
that integrates regularization into the leaf-refinement process. Their proposed algorithm
jointly prunes and refines trees, thereby enhancing the performance of tree ensembles. Prior
research has indicated that high diversity among ensemble models can enhance their gener-
alization performance. Li et al. (2012) select classifiers that both minimize empirical error
and lead to greater ensemble diversity. Ranking-based strategies sort individual models by
their associated prediction error and select a few highly ranked members to compose the
sub-ensemble (Jiang et al., 2017). Nakamura and Sakurada (2019) reduce the number of
distinct split conditions by sharing a common condition among multiple nodes which allows
for practical model size reductions. Other studies have found that removing low-impact
nodes from a decision tree can simplify it while preserving accuracy (Esposito et al., 1997).
In contrast, our approach constructs a new ensemble that contains more but smaller trees
than the original ensemble. Ren et al. (2015) enhance the fitting power of a tree ensemble
model by global leaf value refinement using linear regression. Through global optimiza-

1 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​F​o​​u​a​d​A​l​​k​h​o​u​r​​y​/​S​p​l​i​​t​t​i​n​​g​S​t​u​m​p​s​F​o​r​e​s​t​s​/

1 3

Page 3 of 26  219

https://github.com/FouadAlkhoury/SplittingStumpsForests/

Machine Learning (2025) 114:219

tion, the approach iteratively merges insignificant pairs of adjacent leaves, effectively using
complementary information from multiple trees and reducing model size.

2.2  Representation learning

Decision trees and random forests can be interpreted as representation learning (Bengio et
al., 2013), with studies exploring the use of a pre-trained random forest’s transformed space
as input for linear models. Likewise, Nakano et al. (2022) integrate a representation learn-
ing component into the random forest methodology. Their method treats ensemble nodes
as clusters formed by instances during recursive partitioning. Then it creates a binary vec-
tor where each element corresponds to a cluster node and is set to 1 if a training instance
traverses the node. This newly created tree embedding is then combined with the original
feature set. Welke et al. (2021) identify frequent subtrees in a trained random forest and
train a linear model on the resulting multi-hot leaf representation. Vens and Costa (2011) use
the encoding of nodes visited by data instances. The final feature encoding is obtained by
concatenating the binary vectors of all trees in the forest. Estruch et al. (2004) leverage the
common components within decision tree ensembles. In this structure, the rejected splits are
not discarded but stored as suspended nodes. This allows these nodes to be further explored,
allowing the generation of new models.

2.3  Model deployment

The deployment of tree ensembles on embedded systems requires not only reducing the size
of the ensemble but also careful consideration of the implementation strategy. In virtually
all modern programming languages, decision trees can be implemented either as a sequence
of nested if-else statements or in a ‘native’-style format that stores decision nodes in an
array of structs, which are traversed using a loop. Both approaches offer distinct trade-offs
in terms of memory layout and runtime performance. Based on a probabilistic view of DT
execution, (Buschjäger & Morik, 2017; Buschjaeger et al., 2018) systematically investigate
these implementations and propose optimal memory layouts for both, aiming to reduce
cache misses and to accelerate execution. Additionally, Hakert et al. (2024) introduce FLInt,
a floating-point comparison operator that replaces traditional floating-point comparisons
with integer and logic operations focused on if-else implementations. Beyond these clas-
sical styles, dedicated inference strategies have also emerged. One notable example is
QuickScorer (Lucchese et al., 2015), which restructures the evaluation process by decom-
posing the forest into individual decision nodes. These are processed using efficient bitvec-
tor operations and bitvector comparisons, thereby improving cache locality and enabling
vectorization. Extensions of this idea, such as RapidScorer (Ye et al., 2018) and parallel tree
traversal methods (Lettich et al., 2018), further push the efficiency of ensemble execution.
Finally, with the increasing availability of tensor-based hardware such as GPUs and TPUs,
new execution paradigms have been proposed. Nakandala et al. (2020) introduce a ten-
sor compiler that translates decision tree ensembles into matrix-vector operations, enabling

1 3

 219   Page 4 of 26

Machine Learning (2025) 114:219

their efficient execution on parallel hardware designed for deep learning workloads. We
view these approaches as orthogonal to our work, as smaller forests benefit from a more
refined implementation and vice versa.

3  Notation

In what follows, we consider a supervised learning problem where the instance space is
X ⊆ Rd and the target space is Y ⊆ R. Each data point x ∈ X is a d-dimensional vector
described by a set of features and mapped to the corresponding label y ∈ Y . The goal is to
find a function f : X → R such that the difference between f(x) and the true label y is mini-
mal for all x, y ∼ D where D is a distribution on X × Y . Labeled instances Xtrain ⊆ X are
provided during training, while unlabeled instances Xtest ⊆ X are provided during testing.
In this paper, we apply our approach to classification tasks, but an extension to regression
problems is possible.

We call the root and all internal nodes of a decision tree test nodes. Test nodes are labeled
with a split condition xa ≤ sv for a given attribute a and a split value sv ∈ R. In this work,
test nodes have exactly two children, called left and right. When the split condition of node v
for an instance x ∈ X evaluates to true, the instance passes to the left child of v. An instance
x recursively traverses the decision tree, following a path from the root to a leaf. These paths
represent conjunctions of attribute tests, and the union of these paths constitutes the entire
decision tree. Existing algorithms such as CART, ID3, and C4.5 can recursively divide the
instance space into smaller subspaces to learn decision trees from labeled data Breiman et
al. (1984); Quinlan (1986, 1993). A random forest classifier F = {Tj |j ∈ [1, t]} consists of
a set of t decision trees and an aggregation function to combine individual predictions, e.g.,
majority vote. For a comprehensive background on random forest and decision tree algo-
rithms, refer to Breiman (2001) and Quinlan (1986).

4  The splitting stump forests method

In this section, we provide a description of our splitting stump forests method to extract a
compact model from a potentially large random forest. Given a trained random forest, we
(1) compute a score for each node and select nodes with high scores (Sect. 4.1). Our selec-
tion technique prioritizes split values that yield balanced subtrees. Subsequently, we (2)
refine selected nodes by reducing split value precision, thus achieving a trade-off between
model size and accuracy (Sect. 4.2). Afterwards, we (3) construct one decision tree per
selected node and form an ensemble of stumps (Sect. 4.3). Finally, our approach (4) inte-
grates a representation learning module by using the transformed space derived from the
constructed ensemble as input for a linear model (Sect. 4.4). Figure 1 shows the pipeline of
the primary steps, which we will describe in turn. Algorithm 1 shows the pseudocode of the
first three steps.

1 3

Page 5 of 26  219

Machine Learning (2025) 114:219

Algorithm 1  Splitting stump forest transformation

4.1  Splitting node selection

The aim of the first step is to select a subset of balanced splits from a trained random for-
est F. Technically, we propose a post-hoc selection criterion that favors split conditions

Fig. 1  Splitting stump forests at a glance. Given a random forest (left), selected nodes are selected (mid-
dle) and used as stumps (right). A training example is then transformed into a binary vector by the stumps
and fed to a linear model

1 3

 219   Page 6 of 26

Machine Learning (2025) 114:219

that lead to balanced splits. In particular, for all T ∈ F and for all nodes v of T, we count
the number of incoming training points that evaluate to true Xt

v (resp. false Xf
v) using

the split condition at node v (Line 6 of Algorithm 1). The score of a node v is calculated
as: score(v) ← min(|Xt

v|,|Xf
v |)

|Xt
v|+|Xf

v |
. For instance, when the condition evaluates to True for 6

samples out of 15 at a test node v, then the score would be 0.4. To qualify as balanced, v
should attain a score that meets or exceeds a predetermined threshold p (Lines 7–8). Sub-
sequently, we define F[p] as the set of all nodes v with score(v) ≥ p (Line 11). In deep
random forests, we can limit the size of F[p] by arranging the scores in descending order
and selecting a specific number of nodes with the highest scores. In a binary decision tree,
score(v) ∈ [0, 0.5] and higher values indicate a better division of training samples into two
sub-samples of comparable sizes. Figure 2 shows the selection process on a small random
forest. For efficient computation of score(v), we store the count of training examples travers-
ing tree edges during training. Alternatively, the counts can be derived by a single pass over
an independent dataset that does not require labeling. Once these numbers are accessible,
scores can be computed in constant time and high-scoring nodes can be selected by a single
sweep across the random forest. Duplicate split conditions can be efficiently removed using
an appropriate set data structure for F[p].

Note that a scoring function for decision stump learning with a similar formula was
introduced by Iba and Langley (1992). In contrast to our work, however, their score replaces
e.g. the Gini index in decision stump learning and directly compares against the class label,
while here we score a node in a decision tree based on the balance of training samples
between its left and right branches. The most common way to train random forests is based
on bagging the training data and then using a recursive algorithm (e.g. CART or ID3) with
a Gini-index or mutual-information based split criterion selection. This reduces the variance
of the predictions of the resulting model, but tends to increase the complexity of the model.
Figure 3 shows the decision boundaries of trained random forests on two-dimensional fea-
ture-subsets of the statlog and rice datasets. In our two examples, the focus on pure splits
in combination with voting results in the partition of the feature space into rather small and
discontinuous regions. We argue that this may be detrimental to generalization and that
simpler models may be found that yield similar performance at smaller sizes. Small regions
can arise when split criteria cut off a relatively small portion of the training data with pure
labels. When the split condition of a node v evaluates to true (or false) for most incoming

Fig. 2  A random forest F consisting of two decision trees T1 and T2. Round nodes represent leaves, rect-
angular nodes represent test nodes. The left (right) edge label represents the fraction of training instances
evaluating true (false). Selected nodes in F[p] for filtering threshold p = 0.2, are blue

1 3

Page 7 of 26  219

Machine Learning (2025) 114:219

training points Xv ⊆ Xtrain, it leads to imbalanced subsets at the deeper level of the tree.
These imbalanced subsets consist of a nearly pure and relatively small subset, thus facilitat-
ing good prediction on the training set, but also may cause overfitting and can increase sen-
sitivity to noise and outliers. Conversely, the other branch typically contains a large subset.
This results in deeper trees, longer inference times, and reduced human readability (Leroux
et al., 2018; Thakur et al., 2010). Moreover, this behavior can negatively impact prediction
accuracy as the algorithm prioritizes outliers or errors less relevant in the generalization
process creating overly specific rules based on limited information. In this study, we investi-
gate the effect of choosing attribute-value combinations that result in balanced splits. These
combinations of balanced splits empirically facilitate good data partitioning, thereby help-
ing learners avoid overfitting (Bringmann & Zimmermann, 2007). Figure 3 shows the deci-
sion boundaries of our corresponding splitting stump forests. In these illustrative examples,
selecting nodes that lead to balanced splits for SSF increases the sizes of the continuous
regions while reducing overall model size and maintaining similar predictive performance
of the resulting model.

4.2  Quantization of selected nodes

The test nodes selected in the previous step serve as the basis for the model which we will
construct and explain in the following steps. However, a large number of these test nodes
can significantly increase model complexity and computational cost, especially in embed-
ded devices, where floating-point operations are expensive. To address this, we propose to
use an optional node quantization technique that merges test nodes by rounding split values
to a controlled level of decimal precision. By approximating split values, we effectively
prune redundant test nodes, leading to a more compact and efficient model. Prior work by
Koschel et al., (2023) propose to use fixed-point quantization when using the QuickScorer
algorithm on ARM devices. We adapt this approach to our setting focusing on test nodes: In
particular, for all test nodes (xa ≤ sv) selected in the previous step from the random forest
model for a given attribute xa and a split value sv ∈ R, we apply a rounding function that
maps splitting values to q decimal places: s′

v = round(sv, q) (Line 9). Nodes with identical
rounded values are merged into a single node, reducing model complexity. Notably, scaling
split values and data points by 10q , transforms all split values into integers, enabling effi-
cient integer-based comparisons on hardware. This significantly improves execution speed
on embedded devices, where floating-point operations are computationally expensive.

Fig. 3  Example of decision boundaries in data classification between random forests (RF) and the pro-
posed splitting stump forests (SSF) on two-dimensional projections of two datasets. SSF achieves a com-
parable accuracy using only 0.002 of the total nodes employed by the RF method

1 3

 219   Page 8 of 26

Machine Learning (2025) 114:219

4.3  Splitting stump transformation

So far, we have selected a set of test nodes, which currently lack subtrees or leaf nodes.
More formally, F[p], the result of the previous step, is a set of isolated vertices, each con-
sisting of a feature and split value, but no children. By attaching two leaves to each node
v ∈ F [p], we transform v into the root of a decision tree T ′

v of depth one (line 13). These
decision trees can be viewed as learning a new data representation that maps a data point to
a set of leaves. For each decision tree T ′

v in the new ensemble F ′ of size k, we define a map-
ping function fT ′

v
: Rd → {0, 1} that returns one if and only if the split condition in node

v evaluates to true on x (line 17). For F ′, we thus construct a function fF ′ : Rd → {0, 1}k
which maps x to a new feature vector {fT ′

vi
(x)}k

i=1. That is, each training point x is embed-
ded into the concatenation of features (ones and zeros) resulting from the stumps (line 19).
Using fT ′

v
 instead of the two leaf features of T ′

v is sufficient due to the perfect correlation
between the two leaf features resulting from each stump T ′

v .

4.4  Training of splitting stump forests

To enable deployment to devices with limited resources, we use a linear model to combine
the individual predictions of the decision trees in F ′. We apply logistic regression to model
the relationship between the new feature vectors fF ′ (x) and the target variable. The result-
ing model is both resource-efficient and easy to interpret. Conceptually, this step can be seen
as simultaneously learning the leaf node assignments of all decision stumps and the voting
scheme of the resulting random forest. Following the pruning of the random forest, similar
post-training approaches have been shown to work well (Ren et al., 2015; Buschjäger &
Morik, 2023). Consider a single splitting stump T ′

v: Training a logistic regression classifier
on one-hot encoded representations fT ′

v
 assigns a weight to each of the two dimensions that,

for binary classification, corresponds to the likelihood of belonging to the target class. A
similar approach works for regression tasks using a linear regression learner.

5  Experiments

We first evaluate the proposed method by analyzing its accuracy and efficiency. Then, in
Section 6, we examine its deployment on embedded devices, focusing on memory usage
and performance.

To assess the method’s performance, we conducted experiments on 13 benchmark clas-
sification datasets with varying properties, primarily from the UCI repository (Adult, Letter
Recognition, MAGIC, Spambase, Statlog, Waveform) (Dua & Graff, 2017), ALOI (Geuse-
broek et al., 2005), Bank (Moro et al., 2014), Credit Card (Yeh & Lien, 2009), Dry Bean
(Koklu & Ozkan, 2020), Rice (Cinar & Koklu, 2019), Room (Singh et al., 2018) and Shop-
pers (Sakar et al., 2019). This diverse selection enables the evaluation across varying com-
plexities. Table 4 in the appendices presents details of the datasets. To evaluate the splitting
stump forests approach (SSF), we perform a comparative analysis against the random forest
(RF), the baseline cost complexity pruning (CCP) (Breiman et al., 1984), and four state-
of-the-art compression methods: the global refinement approach (LR) (Ren et al., 2015)2,

2 available at github.com/gereleth/kaggle-telstra

1 3

Page 9 of 26  219

https://github.com/gereleth/kaggle-telstra/blob/master/Globalrefinementofrandomforest.ipynb

Machine Learning (2025) 114:219

the joint leaf refinement and ensemble pruning (LR+L1) (Buschjäger & Morik, 2023)3,
the diversity regularized ensemble pruning method (DREP) (Li et al., 2012), and the indi-
vidual error pruning method (IE) (Jiang et al., 2017)4. We train random forests, using the
Gini index reduction for splitting, by varying the maximum depth d of individual decision
trees among d ∈ {5, 10, 15} and the number t of decision trees among t ∈ {16, 32, 64}. The
same d and t values are adopted as in the SSF method for each approach being compared.
To determine optimal parameters, we conduct a grid search for each method. We perform
5-fold cross-validation and report the average accuracy achieved on test data for each d. The
threshold parameter p is set to values {0.05, 0.1, ..., 0.4, 0.45}. Code for SSF and all experi-
ments is accessible online.5

5.1  Comparative analysis of performance and efficiency

We report the average test accuracy, the number of nodes (test nodes and leaves), and the pre-
diction time, also referred to as inference time, based on simulations conducted on a laptop
with Intel Core i7-1165G7 processor. In sect. 6 we will discuss inference time on an Arduino
embedded device. Table 2 presents a summary of this experiment, displaying the average
ranking achieved by each method across the 13 datasets. This mean ranking demonstrates
the consistent superiority of the SSF approach, with respective global rankings of 2.26,

3 available at ​g​i​t​h​u​b​.​c​o​m​/​s​b​u​s​c​h​j​a​e​g​e​r​/​l​e​a​f​-​r​e​f​i​n​e​m​e​n​t​-​e​x​p​e​r​i​m​e​n​t​s

4 both available at github.com/sbuschjaeger/PyPruning
5 ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​F​​o​u​a​d​A​​l​k​h​o​u​​​r​y​/​S​p​​l​i​t​t​​i​n​g​S​t​u​m​p​s​F​o​r​e​s​t​s​/

Method d=5 d=10 d=15 Global
RF Acc. 5 4.69 3.23 4.31

Size 7 7 7 7
Inf. 6.08 5.46 5.46 5.67

CCP Acc. 6.46 6.62 6.85 6.64
Size 4 2.38 1.85 2.74
Inf. 4.69 3.54 3.46 3.90

DREP Acc. 4.23 3.62 3.69 3.85
Size 3.62 4.69 5 4.44
Inf. 3.07 3.08 2.85 3

IE Acc. 4 3.23 3.38 3.54
Size 3.69 4.54 5.08 4.43
Inf. 2.92 3.23 2.92 3.03

LR Acc. 2.69 3.15 4.38 3.41
Size 5.23 4.77 4.85 4.95
Inf. 4.92 6.77 6.69 6.13

LR+L1 Acc. 2.23 2.77 2.69 2.56
Size 3.38 3.46 3 3.28
Inf. 6 4.85 5.15 5.33

SSF Acc. 2 2.38 2.39 2.26
Size 1.23 1.15 1.30 1.23
Inf. 1.69 1.69 1.92 1.77

Table 2  Average rankings of
methods across 13 datasets based
on accuracy, compression ratio,
and inference time for each depth

Here, rank one is assigned to
the best-performing method and
rank seven to the worst. The
last column shows the global
ranking across all depths and
datasets. The best (lowest)
average rankings are shown in
bold

1 3

 219   Page 10 of 26

https://github.com/sbuschjaeger/leaf-refinement-experiments
https://github.com/sbuschjaeger/PyPruning
https://github.com/FouadAlkhoury/SplittingStumpsForests/

Machine Learning (2025) 114:219

1.23, and 1.77 concerning predictive performance, model size compression, and inference
time. In terms of predictive performance, SSF outperforms original random forests (RF) and
state-of-the-art methods in 22 out of 39 runs (across 13 datasets, each with three maximum
depth values). In most other runs, SSF accuracy is within 1% of the top-performing model.
SSF significantly reduces model size by two to three orders of magnitude compared to other
methods and achieves the best compression ratio in 32 out of 39 runs, achieving a global
ranking of 1.23. Considering the mean ranking, SSF exhibits a marginal improvement in
predictive performance compared to the LR+L1 method, while consistently excelling in
reducing model size. Inference time for SSF is faster than the best-performing models of
competing methods in 31 out of 39 runs, achieving a global ranking of 1.77. Scoring and
selecting nodes in SSF training is efficiently done through a preorder tree traversal, with a
time complexity of O(n) where n is the number of nodes in the random forest if we store a
record of the training examples that traverse edges during random forest training. Looking
at Fig. 4, we note that the SSF outperforms competing methods in model size and inference
time across all datasets while achieving the best or second-best levels of accuracy. Detailed
results on accuracy, compression, and inference time are in Tables 6, 7, 8 in the appendi-
ces. To isolate the effect of the linear model, we trained logistic regression directly on the
original input features. Across all datasets, SSF achieved an average accuracy improvement
of 3.5% over this baseline. This highlights the contribution of the selected splitting stumps
beyond the linear classifier alone. Detailed results of this experiment are shown in Table 5
in the appendices.

5.2  Predictive performance on a space budget

Motivated by space constraints on small embedded devices, we analyze the performance
of SSF and the competitive ensemble pruning methods in a space budget. To that end, we
explore various random forest configurations with d ∈ {5, 10, 15}, t ∈ {8, 16, 32, 64}, and
the corresponding parameters for each competitive method, evaluating predictive perfor-
mance and model size (node count) for each configuration. To accommodate devices with
limited storage capacity, we select the best models that can fit within 32 KB or 16 KB of
memory. Such models are suitable for deployment on microcontroller units like the Arduino
Uno and ATmega169P. We estimate the model size using the baseline implementation of

Fig. 4  The figure shows the highest test accuracy achieved with a maximum depth d = 5, along with its
associated compression ratio and inference time, for each method and dataset

1 3

Page 11 of 26  219

Machine Learning (2025) 114:219

decision trees established by Buschjäger and Morik (2021) and applied in subsequent stud-
ies (Buschjäger & Morik, 2023). This implementation indicates that each node requires
17 + 4C bytes of memory, where C represents the number of classes.

Figure 5 shows that SSF models outperform RF models across all datasets. Notably, this
improvement exceeds 3% in five datasets. Particularly in multi-classification tasks like the
letter recognition dataset (26 classes) and the dry bean dataset (7 classes), the improvement
is significant, due to the complexity of multi-class problems (Yan et al., 2020). In these
tasks, deep random forests excel in capturing the complex decision boundaries necessary for
reasonable accuracy. However, the best random forest model for the letter dataset requires 4
MB of memory, exceeding the IoT device’s budget. Thus, we recommend using SSF mod-
els (of size below 10 KB in most datasets) for multi-classification tasks. Then, we employ
the post-hoc Friedman test methodology as outlined by Demšar (2006) for 32 KB and 16
KB budgets to check for statistically significant performance differences among the seven
examined methods. We formulate the null hypothesis as all methods perform equally well
without significant differences. The Friedman test ranks the methods for each dataset and
each of 5 runs, assigning the top-performing method a rank of 1, the second-best a rank of
2, and so forth. This test determines whether the average ranks significantly deviate from
the expected mean rank of 4. Average ranks provide a useful comparison of the methods, as
illustrated in Table 9 in the appendices. Notably, the computed p-values for both 32 and 16
KB scenarios are 5.8 × 10−40 and 2.14 × 10−41 respectively, leading to the rejection of the
null hypothesis at a highly significant level. As statistical significance is revealed, we apply
a post-hoc procedure for multiple comparisons as proposed by García et al. (2010). Using
the Conover Test, we conduct 21 pairwise comparisons among the seven methods, at confi-
dence levels of 95%, 99%, and 99.9%. Figure 6 demonstrates that both SSF and LR+L1 sig-
nificantly deviate from the other 5 methods at the highest confidence level p-value < 0.001
in both the 32 and 16 KB scenarios. Moreover, the computed p-value between the SSF and
LR+L1 is 1.1 × 10−2 in the 16 KB scenario, indicating that SSF outperforms LR+L1 with
95% confidence on memory-limited devices.

5.3  Compression on a performance budget

As a complementary experiment, we explore compression while tolerating a slight drop in
accuracy. We identify the smallest SSF model within a 2% accuracy margin compared to the
RF model with varying values of d and t. For a relatively small RF with d = 5 and t = 16,
we achieve an average compression rate of 0.04 across all datasets. Moreover, as the ran-

Fig. 5  The plot shows the best
model attained by RF and SSF
with a final model size below
32 KB

1 3

 219   Page 12 of 26

Machine Learning (2025) 114:219

dom forest size increases, so does the compression rate for most datasets. Notably, the SSF
method yields compression values of 0.012, 0.02 and 0.017 for the spambase, shoppers, and
adult datasets, respectively, under the random forest configuration with d = 15 and t = 64;
see Fig. 7.

5.4  Optimizing accuracy versus compression

To validate our assumption regarding the informativeness of nodes with highly balanced
branches, and as our problem involves balancing a trade-off between the predictive perfor-
mance and model compression, we investigate the impact of varying filtering thresholds p
on the trade-off between the two objectives. In particular, we examine the Pareto frontier
which enables us to concentrate on the set of efficient choices of p known as non-dominated
solutions (Lin, 1976).

A Pareto-optimal filtering threshold p∗ is where we cannot find another p that improves
accuracy without sacrificing compression, or vice versa. We determine the set of Pareto-
optimal points for each dataset and for each RF setting d ∈ {5, 10, 15} and t ∈ {16, 32, 64}.

Fig. 7  The plot shows the compression ratio achieved in the datasets adult, shoppers, spambase (left to
right) while permitting a 2% accuracy drop

Fig. 6  Pairwise comparisons through a Conover test between the top-performing models under 16 KB
(left) and 32 KB (right)

1 3

Page 13 of 26  219

Machine Learning (2025) 114:219

Next, we compute the frequency of each threshold p in the Pareto-optimal set, focusing
on data points achieving accuracy within 2% of the original RF accuracy. Omitting this
step would result in any data point with the maximum threshold of 0.45 being incorrectly
classified as Pareto-optimal, given the monotonically increasing nature of the compression
function. The findings, as shown in Fig. 8, indicate that the threshold p = 0.45 exhibits
Pareto-optimality in 71% of the experiments, while p = 0.40 demonstrates Pareto-optimal-
ity in 30% of the cases. The other thresholds are Pareto-optimal in about 20%, except for
p = 0.05 in only 7% of runs. Our findings support our assumption that test nodes with
high splitting power, like those with p = 0.45, provide more information than nodes with
low splitting power. These high-scoring nodes represent only a small fraction of the entire
nodes set in the random forest, producing well-balanced branches, and resulting in a highly
accurate and compact model.

We validate the informativeness of our selected nodes by comparing their predictive
performance to that of a randomly selected sample of the same size. For a given dataset
D, we report the accuracy and number of selected nodes n using the parameters: d = 15,
t = 64, p = 0.4. Then we randomly sample n nodes from the entire node set i.e. this case
corresponds to p = 0.0. These nodes are then transformed into splitting stumps, and we pro-
ceed to train a linear model using their data representation. To ensure experiment validity,
we repeat sampling ten times and calculate the mean and standard deviation. We conduct
two additional experiments: one where we sample n nodes that achieve a score better than
p = 0.2, and another where we sample n nodes with scores less than p = 0.1. Comparing
the predictive performance of score-based splitting stumps with p = 0.4 against sampling-
based stumps, we find that score-based stumps tend to perform better across most datasets,
as shown in Fig. 9. These high-scoring stumps also outperform equivalent-sized sets of
lower-scoring nodes, both those with scores of greater than p = 0.2, and those with scores
less than p = 0.1, reinforcing our assumption that nodes with higher splitting power provide
more information.

Fig. 8  The figure shows Pareto Frontier results for the min/max objectives compression ratio and accu-
racy. The left plot shows the percentage of experiments in which p is non-dominated by another p′ in vari-
ous problem settings d ∈ {5, 10, 15}, t ∈ {16, 32, 64}. Right, we exemplarily show the non-dominated
thresholds in red, and dominated ones in blue on adult, t = 64, d = 10

1 3

 219   Page 14 of 26

Machine Learning (2025) 114:219

5.5  Impact of stump quantization

We conduct experiments across multiple datasets to evaluate the impact of decision stump
quantization (cf. Sect. 4.2). Adjusting the decimal precision parameter q, we can control the
complexity of the model according to hardware constraints and application needs. As we
progressively reduce precision by keeping q = 4, 3, 2, 1, 0 decimal places of the split values,
the number of unique stumps (and hence the SSF size) decreases, with only a slight drop in
accuracy. Figure 10 shows the accuracy against the compression ratio of quantized models.
Similarly, on Rice, accuracy holds up until q = 3, and on Waveform, rounding to q = 2
retains performance within the RF accuracy range. These results show that stump quantiza-
tion significantly reduces model size without compromising accuracy, making it well-suited
for resource-constrained environments.

Fig. 10  Impact of stump refinement across multiple datasets (Spambase, Waveform, and Rice). The fig-
ure shows the trade-off between model size and accuracy as we progressively round the split values. It
includes standard deviation in both accuracy and size (shown as error ellipses). The red dotted lines repre-
sents the RF accuracy ± standard deviation, highlighting the range within which refined models maintain
comparable performance while reducing model size

Fig. 9  Comparison of the predic-
tive performance of the splitting
stumps when p = 0.4, p = 0.2,
sampling-based stumps of all
scores, and low-scoring stumps
(≤ p = 0.1). We report the mean
and standard deviation of 10
random samples

1 3

Page 15 of 26  219

Machine Learning (2025) 114:219

6  Test case: SSF deployment on arduino

To systemically explore the limits of SSF deployment on resource-constrained devices, we
conduct experiments on the Arduino Mega-2560-R3 (Atmel, 2025), which is limited to 8KB
of SRAM. We test various configurations and record the highest achievable accuracy that
can be achieved within the available memory constraints. During deployment, the Arduino
receives the decision stumps, the Logistic Regression (LR) model parameters (weights and
bias), and the test points. Each test point is first transformed into a new data representation
based on the selected stumps before being processed by the LR model. The transformed
data is then multiplied by the LR parameters to generate the final prediction. The memory
footprint of an SSF model deployed on the Arduino is primarily influenced by the number
of decision stumps and the number of classes in the dataset, both of which affect the storage
requirements for the LR model. As the number of stumps increases, additional memory is
required to store the corresponding weights and bias. Additionally, memory usage is affected
by the number of test points and their feature dimensions. In our implementation, each deci-
sion stump requires 25 bytes for binary classification (C = 2), calculated as 17 + 4C. In
multiclass classification tasks where C > 2, the memory requirement per stump increases
to 17 + 8C bytes. Additionally, feature representation impacts memory consumption, as
all floating-point numbers are stored using 4 bytes per value. Consequently, each test point
consisting of |F| features requires an additional 4|F| bytes. Each model requires also a base
overhead of around 300 bytes. The total RAM consumption for a binary classification task
is therefore: RAMused = 300 + (17 + 4 × C) × |S| + 4 × |F | × |X| where C is the num-
ber of classes, |S| is the number of decision stumps, |F| is the number of features, and |X| is
the number of test points used during inference. Experimental results, illustrated in Table
3, demonstrate that SSF models consistently outperform RF models when deployed on
devices with an 8 KB SRAM constraint. While the transformation of test points into the
new data representation and the subsequent LR prediction introduce additional computa-
tional overhead, accuracy remains the most critical factor in many real-world applications.
Future work will focus on optimizing the SSF implementation to enhance efficiency and
reduce inference time while maintaining its accuracy advantage. To measure energy con-

Table 3  The table presents the highest-performing SSF model and RF model deployed on the Arduino Mega
2560 (8KB RAM), highlighting its accuracy, model size, time needed to transform a testing point using the
constructed ensemble of stumps, inference time per test point, and energy consumption per prediction
Dataset SSF RF

Size
(KB)

Acc. (%) Trans-
form.
(ms)

Inf. (ms) Energy
(mJ)

Size
(KB)

Acc. (%) Inf.
(ms)

En-
ergy
(mJ)

Shoppers 5.43 91.10 10.91 25.23 1.01 5.67 88.21 1.6 0.04
Spambase 5.12 93.56 8.80 16.53 0.58 6.06 91.69 2.4 0.06
Adult 5.44 85.88 11.13 19.16 0.69 5.54 82.27 1.8 0.04
Drybean 6.55 90.01 4.72 27.49 0.68 6.21 78.84 2.9 0.07
Letter 6.36 65.28 1.62 28.21 0.63 7.25 45.35 9.1 0.21
Rice 4.95 91.39 10.08 21.44 0.69 5.84 91.07 1.4 0.03
Room 5.64 99.75 5.59 23.42 0.61 5.28 98.82 2.1 0.05
Magic 5.04 85.28 9.40 26.49 0.68 5.55 83.09 1.6 0.04
Credit 4.33 82.52 8.33 17.93 0.53 5.84 81.76 1.8 0.04
For each dataset, the highest accuracy is indicated in bold

1 3

 219   Page 16 of 26

Machine Learning (2025) 114:219

sumption during inference, we employ a USB meter to record the power difference between
the Arduino’s idle and inference state. Power is calculated as P = I · V , where I is current,
and V is voltage, and energy per prediction as E = P · t, where t is the inference time. Code
for SSF deployment on Arduino is on github6.

7  Conclusion

We introduced Splitting Stump Forests, an approach that extracts nodes from a trained ran-
dom forest based on their splitting capabilities. Subsequently, we constructed decision trees
for high-scoring nodes, that are optionally quantized by rounding the split values and trained
a linear model over the derived data representations. Our extensive empirical tests indicate
significant reductions in model size and improved inference speed without sacrificing accu-
racy across diverse datasets. We conducted a comprehensive comparison with competing
methods and an ablation study of our split criterion. Moreover, a deployment study on an
Arduino Mega-2560-R with only 8 KM of memory showed the applicability of our meth-
ods in real-world scenarios. Our encouraging experimental findings revealed our method’s
superiority in model size compression and inference time acceleration while maintaining a
comparable level of predictive performance. These outcomes raise interesting directions for
future research. In particular, to develop practical deployment strategies, ensuring that the
benefits of model compression can be fully realized in real-world applications following the
ongoing integration of machine learning models in edge devices.

Detailed experimental results

Table 4 presents the details of the used datasets in our experiments. Table 5 compares the
classification accuracy of logistic regression with that of the SSF model across different
tree depths. Further insights are provided in Tables 6, 7, 8, which report test accuracy,
compression ratio, and inference time (in ms) for each method and each dataset across three
different depth values d ∈ {5, 10, 15}. RF Size denotes the number of nodes, and the com-
pression ratio is calculated by dividing the number of nodes in the corresponding model by
the original random forest size. Bold entries highlight the best values achieved per dataset.
Finally, Table 9 summarizes the best accuracies achieved with a model size below 16 KB
and 32 KB.

Parameters selection across methods

Cost complexity pruning method

To identify the optimal parameters for the CCP baseline method, we conduct a
grid search involving the parameter ccp_alpha ∈ {0.005, 0.01, 0.015, 0.02} and
min_samples_leaf ∈ {1, 5, 10, 20}. It’s worth noticing that increasing the ccp_alpha

6 https://github.com/sbuschjaeger/mlgen3

1 3

Page 17 of 26  219

https://github.com/sbuschjaeger/mlgen3

Machine Learning (2025) 114:219

Dataset Log. Reg. SSF (d = 5) SSF (d = 10) SSF (d = 15)
Adult 0.828 0.866 0.861 0.858
Aloi 0.97 0.97 0.97 0.971
Bank 0.899 0.898 0.898 0.902
Credit 0.808 0.811 0.814 0.814
Drybean 0.847 0.898 0.914 0.907
Letter 0.773 0.92 0.929 0.93
Magic 0.805 0.836 0.839 0.831
Rice 0.919 0.937 0.939 0.935
Room 0.990 0.998 0.998 0.999
Shopping 0.875 0.901 0.901 0.905
Spambase 0.922 0.945 0.953 0.947
Satlog 0.802 0.874 0.875 0.874
Waveform 0.969 0.971 0.971 0.975

Table 5  Classification accuracy
of logistic regression and SSF
at different tree depths (d = 5,
d = 10, and d = 15)

Dataset #Instances #Attributes #Classes Date
Adult Dua and
Graff (2017)

48842 14 2 1996

ALOI Geuse-
broek et al.
(2005)

50000 27 2 2005

Bank Moro et al.
(2014)

45211 17 2 2012

Credit Card Yeh
and Lien (2009)

30000 24 2 2009

Dry Bean Koklu
and Ozkan
(2020)

13611 17 7 2020

Letter Rec. Dua
and Graff (2017)

20000 16 26 1991

MAGIC Dua and
Graff (2017)

19020 11 2 2007

Rice Cinar and
Koklu (2019)

3810 8 2 2019

Room Singh et
al. (2018)

10129 16 4 2018

Shoppers Sakar
et al. (2019)

12330 18 2 2019

Spambase Dua
and Graff (2017)

4601 57 2 1999

Statlog Dua and
Graff (2017)

6435 36 7 1993

Waveform Dua
and Graff (2017)

3443 21 2 1988

Table 4  We report sources,
number of instances, number of
attributes, number of classes, and
dates for the datasets used

1 3

 219   Page 18 of 26

Machine Learning (2025) 114:219

Ta
bl

e
6 

R
es

ul
ts

 a
tta

in
ed

 b
y

de
pt

h
d

=
5

M
e

th
od

A
du

lt
A

lo
i

B
an

k
C

re
di

t
D

ry
be

an
Le

tte
r

M
ag

ic
R

ic
e

R
oo

m
Sh

op
pe

rs
Sp

am
ba

se
St

at
lo

g
W

av
ef

or
m

R
F

A
cc

.
85

.2
96

.9
89

.8
80

.9
88

.5
66

.8
84

.3
93

.4
99

.6
89

.6
91

.9
85

.8
96

.8
Si

ze
36

32
37

01
38

10
39

24
37

14
38

00
37

44
36

08
31

44
37

22
31

02
38

36
30

43
In

f.
17

15
19

16
14

18
15

11
12

13
11

13
10

C
C

P
A

cc
.

81
.8

96
.2

88
.8

80
.1

87
.2

63
.2

83
.0

93
.6

99
.3

85
.9

91
.8

84
.5

96
.1

Si
ze

0.
25

6
0.

13
8

0.
03

5
0.

11
1

0.
26

0.
52

2
0.

23
2

0.
12

9
0.

41
2

0.
14

8
0.

39
0.

41
8

0.
23

1
In

f.
12

9
11

11
9

13
10

7
9

10
8

10
9

D
R

EP
A

cc
.

84
.0

97
.0

89
.9

81
.6

90
.2

65
.8

84
.7

93
.4

99
.7

88
.1

91
.6

87
.2

97
.1

Si
ze

0.
06

3
0.

13
3

0.
13

1
0.

25
1

0.
12

2
0.

37
8

0.
06

1
0.

36
6

0.
38

4
0.

37
6

0.
11

6
0.

74
4

0.
39

2
In

f.
4

3
4

3
2

23
2

2
4

4
4

3
2

IE
A

cc
.

84
.2

97
.0

89
.8

81
.7

90
.3

66
.6

85
.3

93
.2

99
.7

88
.4

91
.8

87
.3

97
.1

Si
ze

0.
12

1
0.

08
3

0.
24

8
0.

25
9

0.
12

2
0.

40
1

0.
12

8
0.

12
7

0.
72

2
0.

18
7

0.
18

4
0.

26
0.

07
2

In
f.

4
3

3
3

3
12

3
2

4
5

4
3

2
LR

A
cc

.
85

.9
96

.9
90

.1
81

.4
90

.9
81

.2
86

.1
93

.4
99

.6
91

.6
93

.7
88

.9
97

.2
Si

ze
0.

38
5

0.
73

1
0.

18
2

0.
03

7
0.

66
7

0.
90

9
0.

25
6

0.
90

9
0.

90
9

0.
14

3
0.

66
7

0.
76

9
0.

81
3

In
f.

4
33

20
4

12
22

11
7

8
6

6
8

6
LR

+L
1

A
cc

.
86

.1
97

.1
90

.2
81

.1
91

.6
80

.1
86

.2
93

.6
99

.7
91

.5
93

.0
88

.4
97

.1
Si

ze
0.

96
9

0.
45

3
0.

01
5

0.
67

2
0.

43
3

0.
21

3
0.

32
9

0.
12

6
0.

24
1

0.
08

2
0.

09
7

0.
13

8
0.

04
6

In
f.

21
23

2
24

15
18

14
6

15
17

9
16

17
SS

F
A

cc
.

86
.6

97
.1

90
.2

81
.3

89
.8

92
.0

86
.6

93
.7

99
.8

90
.5

94
.5

87
.4

97
.1

Si
ze

0.
05

3
0.

07
9

0.
01

5
0.

00
1

0.
09

1
0.

04
0.

14
3

0.
07

7
0.

08
3

0.
03

6
0.

04
2

0.
05

3
0.

00
2

In
f.

3
2

2
3

3
4

4
<1

2
<1

<1
3

<1
Fo

r e
ac

h
da

ta
se

t a
nd

 m
et

ric
, t

he
 b

es
t r

es
ul

ts
 a

re
 sh

ow
n

in
 b

ol
d

1 3

Page 19 of 26  219

Machine Learning (2025) 114:219

Ta
bl

e
7 

R
es

ul
ts

 a
tta

in
ed

 b
y

de
pt

h
d

=
10

M
et

ho
d

A
du

lt
A

lo
i

B
an

k
C

re
di

t
D

ry
be

an
Le

tte
r

M
ag

ic
R

ic
e

R
oo

m
Sh

op
pe

rs
Sp

am
ba

se
St

at
lo

g
W

av
ef

or
m

R
F

A
cc

.
85

.8
96

.9
89

.8
81

.1
92

.5
89

.3
87

.0
93

.6
99

.7
90

.9
93

.6
89

.5
97

.1
Si

ze
34

62
8

38
25

6
45

19
2

50
67

0
32

99
0

48
14

2
35

84
6

17
28

8
74

82
35

78
0

15
57

0
26

69
2

38
25

6
In

f.
25

21
22

17
15

20
16

11
13

14
12

14
8

C
C

P
A

cc
.

81
.9

95
.8

88
.8

80
.6

87
.4

69
.7

83
.5

93
.7

99
.4

85
.9

92
.2

85
.3

97
.0

Si
ze

0.
03

1
0.

01
3

0.
00

3
0.

00
9

0.
03

0
0.

08
1

0.
02

9
0.

03
5

0.
17

3
0.

01
8

0.
10

2
0.

07
9

0.
08

9
In

f.
12

9
11

10
10

14
10

8
9

9
8

10
11

D
R

EP
A

cc
.

85
.8

96
.9

90
.0

81
.3

91
.2

88
.2

87
.2

93
.9

99
.8

89
.8

94
.8

91
.1

97
.2

Si
ze

0.
37

8
0.

27
8

0.
13

6
0.

11
9

0.
20

4
0.

39
2

0.
38

4
0.

74
1

0.
39

6
0.

36
9

0.
71

9
0.

37
9

0.
06

3
In

f.
16

9
14

7
7

33
6

2
4

5
6

3
2

IE
A

cc
.

85
.7

96
.9

90
.0

81
.4

90
.0

90
.5

87
.2

93
.9

99
.9

90
.4

94
.9

91
.1

97
.5

Si
ze

0.
52

1
0.

32
1

0.
50

9
0.

95
6

0.
20

2
0.

22
1

0.
22

4
0.

25
5

0.
16

4
0.

51
2

0.
38

5
0.

06
3

0.
48

1
In

f.
17

15
32

12
4

15
5

13
3

3
5

2
2

LR
A

cc
.

85
.9

97
.1

90
.1

81
.2

92
.3

93
.4

87
.2

93
.7

99
.7

91
.3

94
.3

89
.3

97
.3

Si
ze

0.
05

3
0.

83
3

0.
02

2
0.

01
6

0.
52

6
0.

90
9

0.
81

3
0.

08
3

0.
90

9
0.

16
7

0.
09

1
0.

55
6

0.
90

9
In

f.
39

38
34

20
20

38
29

13
18

19
12

15
13

LR
+L

1
A

cc
.

86
.5

97
.2

90
.2

80
.3

93
.0

94
.6

87
.6

93
.6

99
.8

90
.9

94
.0

91
.0

97
.2

Si
ze

0.
84

3
0.

19
1

0.
01

5
0.

53
1

0.
29

4
0.

12
8

0.
20

5
0.

07
4

0.
09

3
0.

06
3

0.
13

5
0.

20
9

0.
03

1
In

f.
14

12
2

26
14

16
14

7
11

22
12

22
9

SS
F

A
cc

.
86

.1
97

.2
90

.1
81

.5
91

.4
92

.9
87

.3
93

.9
99

.9
90

.1
95

.3
87

.5
97

.1
Si

ze
0.

01
3

0.
00

1
0.

01
4

0.
00

2
0.

02
5

0.
00

4
0.

02
1

0.
02

7
0.

04
1

0.
01

7
0.

01
3

0.
04

6
0.

03
2

In
f.

6
2

10
13

6
5

4
<1

2
2

<1
6

2
Fo

r e
ac

h
da

ta
se

t a
nd

 m
et

ric
, t

he
 b

es
t r

es
ul

ts
 a

re
 sh

ow
n

in
 b

ol
d

1 3

 219   Page 20 of 26

Machine Learning (2025) 114:219

Ta
bl

e
8 

R
es

ul
ts

 a
tta

in
ed

 b
y

de
pt

h
d

=
15

M
et

ho
d

A
du

lt
A

lo
i

B
an

k
C

re
di

t
D

ry
be

an
Le

tte
r

M
ag

ic
R

ic
e

R
oo

m
Sh

op
pe

r
Sp

am
ba

se
St

at
lo

g
W

av
ef

or
m

R
F

A
cc

.
86

.0
97

.0
89

.9
81

.0
92

.6
99

.1
87

.7
92

.8
99

.8
91

.0
94

.5
90

.6
97

.2
Si

ze
11

95
38

56
10

2
18

65
30

17
79

88
67

33
4

16
61

28
10

09
82

23
09

2
83

24
87

14
8

26
31

2
42

20
4

36
12

1
In

f.
32

17
25

25
16

24
18

12
14

16
15

15
18

C
C

P
A

cc
.

82
.3

94
.6

88
.8

80
.7

87
.2

69
.6

83
.8

92
.8

99
.2

86
.9

91
.9

86
.1

95
.1

Si
ze

0.
00

8
0.

01
7

0.
00

1
0.

00
4

0.
01

5
0.

02
4

0.
02

1
0.

01
8

0.
16

2
0.

00
6

0.
05

8
0.

05
1

0.
02

1
In

f.
17

11
12

11
10

14
10

8
9

14
9

9
11

D
R

EP
A

cc
.

85
.7

97
.2

90
.1

81
.1

90
.4

95
.5

87
.6

93
.6

99
.8

90
.6

94
.2

90
.2

97
.5

Si
ze

0.
19

5
0.

32
5

0.
18

9
0.

51
1

0.
75

8
0.

38
1

0.
37

4
0.

18
2

0.
49

7
0.

75
1

0.
48

9
0.

37
6

0.
12

1
In

f.
24

5
29

9
5

28
8

2
3

6
5

3
2

IE
A

cc
.

86
.0

97
.1

90
.0

81
.4

90
.5

96
.6

87
.6

93
.5

99
.7

90
.6

94
.4

90
.1

97
.5

Si
ze

0.
51

3
0.

16
2

0.
13

6
0.

74
1

0.
51

7
0.

42
3

0.
76

9
0.

37
7

0.
16

2
0.

38
4

0.
37

4
0.

50
4

0.
25

1
In

f.
41

8
11

19
3

16
11

3
4

5
6

2
3

LR
A

cc
.

85
.9

97
.0

90
.0

81
.3

92
.1

96
.3

86
.1

92
.9

99
.6

90
.5

94
.5

89
.2

97
.3

Si
ze

0.
03

1
0.

43
1

0.
10

1
0.

00
7

0.
25

6
0.

90
1

0.
38

8
0.

20
6

0.
90

1
0.

72
9

0.
43

1
0.

90
9

0.
07

8
In

f.
70

73
32

29
20

80
46

16
20

32
16

26
14

LR
+L

1
A

cc
.

86
.1

97
.4

90
.2

80
.5

93
.6

96
.5

87
.6

93
.3

99
.8

91
.0

94
.3

91
.1

97
.2

Si
ze

0.
02

3
0.

03
3

0.
02

8
0.

04
4

0.
17

3
0.

10
1

0.
16

4
0.

06
9

0.
07

1
0.

05
2

0.
11

2
0.

16
8

0.
02

9
In

f.
22

38
20

34
29

18
14

6
10

21
11

29
5

SS
F

A
cc

.
86

.1
97

.3
90

.2
81

.5
90

.7
93

.0
86

.1
93

.7
99

.9
91

.2
94

.7
87

.4
97

.6
Si

ze
0.

01
4

0.
00

1
0.

00
5

0.
00

2
0.

01
2

0.
00

1
0.

01
0.

03
7

0.
02

5
0.

03
4

0.
01

5
0.

04
5

0.
00

1
In

f.
16

3
11

24
11

7
7

2
2

5
<1

2
2

Fo
r e

ac
h

da
ta

se
t a

nd
 m

et
ric

, t
he

 b
es

t r
es

ul
ts

 a
re

 sh
ow

n
in

 b
ol

d

1 3

Page 21 of 26  219

Machine Learning (2025) 114:219

Ta
bl

e
9 
Th
e
ta
bl
e
sh
ow

s t
he
 b
es
t a
cc
ur
ac
y
w
ith
 a
 m
od
el
 si
ze
 b
el
ow

 1
6
K
B
 a
nd
 3
2
K
B

D
at

as
et

16
 K
B

32
 K
B

 R
F

C
C

P
 D

R
EP

 IE
 L

R
LR

L1
 S

SF
 R

F
C

C
P

 D
R

EP
 IE

LR
LR

L1
SS

F
A

du
lt

82
81

.9
80

.5
82

.9
84

.4
85

.7
86

.1
85

.1
82

.3
83

.4
84

.3
85

.9
86

.2
86

.1
±0

.4
±0

.3
±0

.2
±0

.6
±0

.4
±0

.3
±0

.3
±0

.3
±0

.4
±0

.4
±0

.5
±0

.3
±0

.3
±0

.3
A

lo
i

96
.7

96
.2

96
.9

96
.9

96
.1

97
.0

97
.1

96
.8

96
.2

96
.9

97
96

.1
97

.1
97

.1
±0

.4
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
±0

.1
B

an
k

89
.9

88
.9

89
.8

89
.7

90
.0

90
.2

90
.1

90
88

.9
89

.8
89

.7
90

.1
90

.4
90

.1
±0

.1
±0

.5
±0

.1
±0

.1
±0

.3
±0

.3
±0

.2
±0

.1
±0

.3
±0

.1
±0

.1
±0

.2
±0

.2
±0

.1
C

re
di

t
81

80
.7

80
.8

81
.1

81
.4

81
.1

81
.1

80
.9

80
.7

81
81

.3
81

.4
80

.9
81

.2
±0

.2
±0

.3
±0

.1
±0

.2
±0

.3
±0

.1
±0

.2
±0

.1
±0

.2
±0

.1
±0

.1
±0

.2
±0

.1
±0

.1
D

ry
 b

ea
n

88
.1

85
.4

89
.1

88
.7

89
.2

91
.8

91
.4

87
.9

87
.4

89
.3

89
.9

89
.4

91
.8

91
.4

±0
.7

±0
.3

±0
.1

±0
.3

±0
.3

±0
.1

±0
.4

±1
.0

±0
.4

±0
.5

±0
.6

±0
.5

±0
.3

±0
.4

Le
tte

r
62

.5
64

.3
62

.6
62

.1
62

.9
76

.3
93

.0
63

.3
61

.2
65

.9
65

.8
78

.2
71

.4
93

.0
±2

.2
±1

.1
±0

.9
±1

.2
±0

.9
±0

.9
±1

.7
±3

.6
±1

.4
±1

.0
±1

.7
±1

.5
±1

.4
±1

.9
M

ag
ic

84
.9

83
.2

83
.7

84
.2

84
.9

85
.8

86
.3

86
83

.5
83

.8
83

.9
86

.1
86

.5
86

.3
±0

.5
±0

.9
±0

.5
±0

.5
±0

.0
1

±0
.2

±0
.7

±0
.7

±0
.7

±0
.3

±0
.5

±0
.6

±0
.2

±0
.4

R
ic

e
92

.5
93

.7
93

.1
0.

93
93

.2
93

.5
93

.8
93

.4
93

.7
93

.6
93

.5
93

.2
93

.5
93

.8
±0

.6
±0

.7
±0

.3
±0

.4
±0

.7
±0

.1
±0

.1
±0

.7
±0

.5
±0

.2
±0

.3
±0

.6
±0

.1
±0

.1
R

oo
m

99
.2

97
.0

99
.5

99
.6

99
.2

99
.8

99
.9

99
.5

99
.3

99
.7

99
.9

99
.2

99
.8

99
.9

±0
.3

±0
.4

±0
.1

±0
.2

±0
.6

±0
.2

±0
.2

±0
.1

±0
.2

±0
.1

±0
.2

±0
.3

±0
.1

±0
.1

Sh
op

pe
rs

87
.2

86
.9

90
.1

91
.0

91
.6

91
.3

90
.7

90
.2

86
.9

90
.3

91
.2

91
.6

91
.3

90
.7

±1
.5

±0
.6

±0
.3

±0
.2

±0
.4

±0
.3

±0
.4

±1
.2

±0
.2

±0
.4

±0
.1

±0
.4

±0
.2

±0
.2

Sp
am

ba
se

90
.8

91
.3

90
.9

92
.4

91
.6

92
.7

95
.3

91
.1

91
.7

92
.9

92
.4

94
.3

93
.2

95
.3

±0
.6

±0
.4

±0
.2

±1
.0

±0
.5

±0
.2

±0
.4

±0
.6

±0
.6

±0
.6

±1
.2

±0
.4

±0
.2

±0
.2

St
at

lo
g

85
.2

84
.1

84
.7

84
.8

84
.9

86
.5

87
.4

85
.1

84
.9

84
.8

84
.7

87
.1

87
.9

87
.4

±1
.6

±1
.0

±0
.4

±0
.4

±0
.8

±0
.2

±0
.3

±0
.8

±0
.6

±0
.7

±0
.6

±0
.5

±0
.2

±0
.1

W
av

ef
or

m
96

.9
95

.1
96

.9
96

.9
96

.9
97

.0
97

.1
96

.6
95

.1
97

97
96

.9
97

.2
97

.1
±0

.2
±0

.2
±0

.1
±0

.1
±0

.3
±0

.1
±0

.1
±0

.2
±0

.1
±0

.1
±0

.1
±0

.2
±0

.1
±0

.1
Av

g
ra

nk
4.

79
5.

86
4.

79
4.

17
3.

94
2.

09
1.

54
4.

72
6.

32
4.

45
4.

28
3.

51
2.

1
1.

88
B

ol
d

en
tr

ie
s i

nd
ic

at
e

th
e

be
st

 m
et

ho
d

fo
r e

ac
h

da
ta

se
t.

Th
e

la
st

 li
ne

 sh
ow

s t
he

 a
ve

ra
ge

 ra
nk

in
g

of
 th

e
ac

cu
ra

cy
 o

f e
ac

h
m

et
ho

d
ac

ro
ss

 a
ll

da
ta

se
ts

1 3

 219   Page 22 of 26

Machine Learning (2025) 114:219

value increases the number of pruned nodes while min_samples_leaf defines the mini-
mum data points required in a leaf node.

Diversity regularized ensemble pruning

We varied the balance hyperparameter ρ ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}
that controls the fraction of classifiers considered when minimizing the empirical error.
Larger values of ρ put more emphasis on the empirical error, while a small ρ pays more
attention on the diversity.

Individual error pruning

We varied the hyperparameter nl ∈ {26, 27, 28, 29} that controls the maximum number of
leaf nodes in each individual tree in the random forest.

Global refinement of random forest

We varied the hyperparameter nt ∈ {23, 24, 25} that controls the number of selected trees
from the random forest. Each pruning process ran for 25 and 50 epochs.

Joint leaf-refinement and ensemble pruning through L1 regularization

We varied the number of selected trees from the random forest hyperparameter
nt ∈ {23, 24, 25, 26}. We ran the experiment for 25 and 50 epochs. The regularization
strength varied between {0.1, 0.2, ..., 0.9}.

Acknowledgements  FA and SB have been funded by the Federal Ministry of Education and Research of
Germany and the state of North Rhine-Westphalia as part of the Lamarr Institute for Machine Learning and
Artificial Intelligence, LAMARR24B. PW acknowledges support from the Vienna Science and Technology
Fund (WWTF) project StruDL (ICT22-059).

Author contributions  F.A wrote the main manuscript draft and did the experiments. S.B and P.W wrote parts
of text and reviewed the manuscript.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Data availability  Datasets used are referenced in the manuscript and available alongside the code in the fol-
lowing github repository: https://git​hub.com/Fou​adAlkhoury/​Splittin​gStumpsForests/

Declarations

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.

1 3

Page 23 of 26  219

https://github.com/FouadAlkhoury/SplittingStumpsForests

Machine Learning (2025) 114:219

If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Alkhoury, F., & Welke, P. (2024). Splitting stump forests. In: International Conference on Discovery Science
(DS). https://doi.org/10.1007/978-3-031-78980-9_1

Atmel. (2016). ATMEGA169P 8-bit AVR microcontroller with 16k bytes in-system datasheet. ​h​t​t​p​s​:​​/​/​w​w​w​​.​a​l​
l​d​a​​t​a​s​h​​e​e​t​.​c​​o​m​/​d​a​​t​a​s​h​e​e​​t​-​p​d​​f​/​p​d​f​​/​1​4​6​7​​7​9​/​A​T​M​​E​L​/​A​​T​M​E​G​A​1​6​9​P​.​h​t​m​l www.alldatasheet.com

Atmel. (2016). Atsam3s2aa-au-mc 32bit 64kb lqfp-48. ​h​t​t​p​s​:​​/​/​w​w​w​​.​d​i​s​t​r​​e​l​e​c​​.​d​e​/​W​​e​b​/​D​o​​w​n​l​o​a​d​​s​/​_​t​​/​d​s​/​S​A​M​
3​N​_​e​n​g​_​t​d​s​.​p​d​f distrelec.de

Atmel. (2025). Arduino mega 2560 rev3. ​h​t​t​p​s​:​​/​/​w​w​w​​.​a​l​l​d​a​​t​a​s​h​​e​e​t​.​c​​o​m​/​d​a​​t​a​s​h​e​e​​t​-​p​d​​f​/​p​d​f​​/​1​4​2​5​​0​3​5​/​E​T​​C​/​M​
E​​G​A​-​2​5​6​0​.​h​t​m​l datasheet

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives.
Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.

Branco, S., Ferreira, A. G., & Cabral, J. (2019). Machine learning in resource-scarce embedded systems,
FPGAs, and end-devices: A survey. Electronics, 8(11), 1289.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. New York,

NY, USA: Chapman and Hall.
Bringmann, B., & Zimmermann, A. (2007). The chosen few: On identifying valuable patterns. In: Interna-

tional Conference on Data Mining.
Buschjaeger, S., Chen, K. -H., Chen, J. -J., & Morik, K. (2018). Realization of random forest for real-

time evaluation through tree framing. In: The IEEE International Conference on Data Mining Series
(ICDM). https://ieeexplore.ieee.org/document/8594826

Buschjäger, S., & Morik, K. (2021). Improving the accuracy-memory trade-off of random forests via leaf-
refinement. arXiv preprint arXiv:2110.10075

Buschjäger, S., & Morik, K. (2017). Decision tree and random forest implementations for fast filtering of
sensor data. Transactions on Circuits and Systems I: Regular Papers, 65(1), 209–222.

Buschjäger, S., & Morik, K. (2023). Joint leaf-refinement and ensemble pruning through l1 regularization.
Data Mining and Knowledge Discovery, 37(3), 1230–1261.

Cinar, I., & Koklu, M. (2019). Classification of rice varieties using artificial intelligence methods. Interna-
tional Journal of Intelligent Systems and Applications in Engineering, 7(3), 188–194.

Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7, 1–30.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In: International Workshop on Multiple
Classifier Systems, pp. 1–15.

Dua, D., & Graff, C. (2017). UCI Machine Learning Repository.
Esposito, F., Malerba, D., Semeraro, G., & Kay, J. (1997). A comparative analysis of methods for pruning

decision trees. Transactions on Pattern Analysis and Machine Intelligence, 19(5), 476–491.
Estruch, V., Ferri, C., Hernández-Orallo, J., & Ramírez-Quintana, M. J. (2004). Bagging decision multi-trees.

In: Multiple Classifier Systems: International Workshop.
Filho, C. P., Marques, E., Chang, V., Santos, L., Bernardini, F., Pires, P. F., Ochi, L., & Delicato, F. C. (2022).

A systematic literature review on distributed machine learning in edge computing. Sensors, 22(7), 2665.
García, S., Fernández, A., Luengo, J., & Herrera, F. (2010). Advanced nonparametric tests for multiple com-

parisons in the design of experiments in computational intelligence and data mining: Experimental
analysis of power. Information Sciences, 180(10), 2044–2064.

Geusebroek, J., Burghouts, G., & Smeulders, A. (2005). The amsterdam library of object images. Interna-
tional Journal of Computer Vision, 61, 103–112.

Hakert, C., Chen, K. -H., & Chen, J .-J. (2024). Flint: Exploiting floating point enabled integer arithmetic for
efficient random forest inference. In: 2024 Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), pp. 1–2. IEEE

Hua, H., Li, Y., Wang, T., Dong, N., Li, W., & Cao, J. (2023). Edge computing with artificial intelligence: A
machine learning perspective. ACM Computing Surveys, 55(9), 1–35.

Iba, W., & Langley, P. (1992). Induction of one-level decision trees. In: International Workshop on Machine
Learning, pp. 233–240.

1 3

 219   Page 24 of 26

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-78980-9_1
https://www.alldatasheet.com/datasheet-pdf/pdf/146779/ATMEL/ATMEGA169P.html
https://www.alldatasheet.com/datasheet-pdf/pdf/146779/ATMEL/ATMEGA169P.html
https://www.distrelec.de/Web/Downloads/_t/ds/SAM3N_eng_tds.pdf
https://www.distrelec.de/Web/Downloads/_t/ds/SAM3N_eng_tds.pdf
https://www.alldatasheet.com/datasheet-pdf/pdf/1425035/ETC/MEGA-2560.html
https://www.alldatasheet.com/datasheet-pdf/pdf/1425035/ETC/MEGA-2560.html
https://ieeexplore.ieee.org/document/8594826
http://arxiv.org/abs/2110.10075

Machine Learning (2025) 114:219

Jiang, Z., Liu, H., Fu, B., & Wu, Z. (2017). Generalized ambiguity decompositions for classification with
applications in active learning and unsupervised ensemble pruning. In: AAAI Conference on Artificial
Intelligence.

Koklu, M., & Ozkan, I. A. (2020). Multiclass classification of dry beans using computer vision and machine
learning techniques. Computers and Electronics in Agriculture, 174, Article 105507.

Koschel, S., Buschjäger, S., Lucchese, C., & Morik, K. (2023). Fast inference of tree ensembles on arm
devices. arXiv preprint arXiv:2305.08579

Leroux, A., Boussard, M., & Dès, R. (2018). Information gain ratio correction: improving prediction with
more balanced decision tree splits. arXiv preprint arXiv:1801.08310

Lettich, F., Lucchese, C., Nardini, F. M., Orlando, S., Perego, R., Tonellotto, N., & Venturini, R. (2018).
Parallel traversal of large ensembles of decision trees. IEEE Transactions on Parallel and Distributed
Systems, 30(9), 2075–2089.

Li, H., Kadav, A., Durdanovic, I., Samet, H., & Graf, H. P. (2017). Pruning filters for efficient convnets. In:
ICLR.

Li, N., Yu, Y., & Zhou, Z. -H. (2012). Diversity regularized ensemble pruning. In: ECML PKDD, pp. 330–345.
Lin, J. G. (1976). Three methods for determining pareto-optimal solutions of multiple-objective problems. In:

Directions in Large-Scale Systems: Many-Person Optimization and Decentralized Control.
Lucchese, C., Nardini, F. M., Orlando, S., Perego, R., Tonellotto, N., & Venturini, R. (2015). Quickscorer:

A fast algorithm to rank documents with additive ensembles of regression trees. In: Proceedings of the
38th International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 73–82.

Merenda, M., Porcaro, C., & Iero, D. (2020). Edge machine learning for AI-enabled IoT devices: A review.
Sensors, 20(9), 2533.

Moro, S., Cortez, P., & Rita, P. (2014). A data-driven approach to predict the success of bank telemarketing.
Decision Support Systems, 62, 22–31.

Murshed, M. S., Murphy, C., Hou, D., Khan, N., Ananthanarayanan, G., & Hussain, F. (2021). Machine
learning at the network edge: A survey. ACM Computing Surveys, 54(8), 1–37.

Nakamura, A., & Sakurada, K. (2019). An algorithm for reducing the number of distinct branching conditions
in a decision forest. In: ECML PKDD, pp. 578–589.

Nakandala, S., Saur, K., Yu, G. -I., Karanasos, K., Curino, C., Weimer, M., & Interlandi, M. (2020). A tensor
compiler for unified machine learning prediction serving. In: 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pp. 899–917.

Nakano, F. K., Pliakos, K., & Vens, C. (2022). Deep tree-ensembles for multi-output prediction. Pattern
Recognition, 121, Article 108211.

Partalas, I., Tsoumakas, G., & Vlahavas, I. (2009). Pruning an ensemble of classifiers via reinforcement
learning. Neurocomputing 72(7-9).

Peterson, A. H., & Martinez, T. R. (2009). Reducing decision tree ensemble size using parallel decision dags.
International Journal on Artificial Intelligence Tools, 18(04), 613–620.

Quinlan, J. R. (1993). C4.5: Programs for machine learning. In: ICML.
Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.
Ren, S., Cao, X., Wei, Y., & Sun, J. (2015). Global refinement of random forest. In: Conference on Computer

Vision and Pattern Recognition.
Sagi, O., & Rokach, L. (2018). Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining

and Knowledge Discovery, 8(4), 1249.
Sakar, C. O., Polat, S. O., Katircioglu, M., & Kastro, Y. (2019). Real-time prediction of online shoppers’ pur-

chasing intention using multilayer perceptron and LSTM recurrent neural networks. Neural Computing
and Applications, 31(10), 6893–6908.

Singh, A. P., Jain, V., Chaudhari, S., Kraemer, F. A., Werner, S., & Garg, V. (2018). Machine learning-based
occupancy estimation using multivariate sensor nodes. In: IEEE Globecom Workshops, pp. 1–6.

Thakur, D., Markandaiah, N., & Raj, D. S. (2010). Re optimization of id3 and c4.5 decision tree. In: Interna-
tional Conference on Computer and Communication Technology, pp. 448–450.

Vailshery, L. (2024). Number of Internet of Things (IoT) connections worldwide from 2022 to 2023, with
forecasts from 2024 to 2033. ​h​t​t​p​s​:​​/​/​w​w​w​​.​s​t​a​t​i​​s​t​a​.​​c​o​m​/​s​​t​a​t​i​s​​t​i​c​s​/​1​​1​8​3​4​​5​7​/​i​o​​t​-​c​o​n​​n​e​c​t​e​d​​-​d​e​v​​i​c​e​s​-​w​o​r​l​d​
w​i​d​e​/ www.statista.com

Vens, C., & Costa, F. (2011). Random forest based feature induction. In: International Conference on Data
Mining, pp. 744–753.

Welke, P., Alkhoury, F., Bauckhage, C., & Wrobel, S. (2021). Decision snippet features. In: International
Conference on Pattern Recognition, pp. 4260–4267.

Yan, J., Zhang, Z., Lin, K., Yang, F., & Luo, X. (2020). A hybrid scheme-based one-vs-all decision trees for
multi-class classification tasks. Knowledge-Based Systems, 198, Article 105922.

1 3

Page 25 of 26  219

http://arxiv.org/abs/2305.08579
http://arxiv.org/abs/1801.08310
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

Machine Learning (2025) 114:219

Ye, T., Zhou, H., Zou, W. Y., Gao, B., & Zhang, R. (2018). Rapidscorer: Fast tree ensemble evaluation by
maximizing compactness in data level parallelization. In: Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining, pp. 941–950.

Yeh, I. -C., & Lien, C. -h. (2009). The comparisons of data mining techniques for the predictive accuracy of
probability of default of credit card clients. Expert Systems with Applications 36(2), 2473–2480.

Publisher's Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

1 3

 219   Page 26 of 26

	﻿Splitting stump forests: tree ensemble compression for edge devices (extended version)
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿2﻿ ﻿Background
	﻿2.1﻿ ﻿Ensemble compression
	﻿2.2﻿ ﻿Representation learning
	﻿2.3﻿ ﻿Model deployment

	﻿3﻿ ﻿Notation
	﻿﻿4﻿ ﻿The splitting stump forests method
	﻿﻿4.1﻿ ﻿Splitting node selection
	﻿﻿4.2﻿ ﻿Quantization of selected nodes
	﻿﻿4.3﻿ ﻿Splitting stump transformation
	﻿﻿4.4﻿ ﻿Training of splitting stump forests

	﻿﻿5﻿ ﻿Experiments
	﻿5.1﻿ ﻿Comparative analysis of performance and efficiency
	﻿5.2﻿ ﻿Predictive performance on a space budget
	﻿5.3﻿ ﻿Compression on a performance budget
	﻿5.4﻿ ﻿Optimizing accuracy versus compression
	﻿5.5﻿ ﻿Impact of stump quantization

	﻿﻿6﻿ ﻿Test case: SSF deployment on arduino
	﻿﻿7﻿ ﻿Conclusion
	﻿Detailed experimental results
	﻿Parameters selection across methods
	﻿Cost complexity pruning method
	﻿Diversity regularized ensemble pruning
	﻿Individual error pruning
	﻿Global refinement of random forest
	﻿Joint leaf-refinement and ensemble pruning through L1 regularization

	﻿References

