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Abstract
We introduce Splitting Stump Forests—small ensembles of weak learners extracted from 
a trained random forest. The high memory consumption of random forests renders them 
unfit for resource-constrained devices. We show empirically that we can significantly re-
duce the model size and inference time by selecting nodes that evenly split the arriving 
training data and applying a linear model on the resulting representation. Our extensive 
empirical evaluation indicates that Splitting Stump Forests outperform random forests and 
state-of-the-art compression methods on memory-limited embedded devices.

Keywords  Ensemble compression · Random forests · Edge devices

1  Introduction

The global count of Internet of Things (IoT) devices is expected to reach approximately 32 
billion units by 2030 (Vailshery, 2024). Many IoT devices require real-time decisions and 
therefore include limited computing capabilities (Merenda et al., 2020). Running machine 
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learning models directly on embedded devices is increasingly popular due to improvements 
in reliability, affordability, and energy efficiency (Filho et al., 2022). Local models also 
reduce or even eliminate the need for transferring data to cloud servers when connectiv-
ity, bandwidth consumption, communication costs, network latency, or privacy are relevant 
concerns (Hua et al., 2023; Murshed et al., 2021).

Ensemble models can outperform the predictive performance of individual classifiers in 
many machine learning tasks (Dietterich, 2000; Sagi & Rokach, 2018). However, ensemble 
models combine multiple base models, resulting in high memory consumption. The model 
size is also a primary determinant of inference time, an aspect equally important as model 
accuracy in real-time applications. IoT devices, however, typically contain resource-con-
strained microcontrollers with limited flash memory, ranging from a few Kbytes to a maxi-
mum of a few Mbytes, as shown in Table 1. As a result, the best-performing ensemble model 
is often too large and too slow to be deployed for real-time applications in IoT devices. 
This work presents small tree ensemble models that provide responsive and highly accurate 
predictions. Decision trees efficiently represent sequences of if-else conditions and can be 
compiled to run efficiently on embedded devices (Buschjäger & Morik, 2017, 2021). We 
revisit these models and propose a lossy compression scheme for their ensembles, ran-
dom forests. A random forest reduces the variance of the predictions compared to a single 
decision tree (Breiman, 2001). However, having only a few small trees in a random forest 
can hinder predictive performance, while large random forests pose a significant challenge 
for resource-limited devices. Our experiments show that high-performing random forests 
often exceed 100K nodes. As a result, these models may require more than 5–10 Mbytes of 
memory even in very compact implementations (Buschjäger & Morik, 2021).

We propose a novel method to create a new, compressed ensemble from a large random 
forest model, often comprising hundreds of thousands of nodes. To enable compression, 
the approach extracts a subset of test nodes from a trained random forest to build a smaller 
ensemble of splitting stumps with a total size of only a few Kbytes. Our approach combines 
the supervised selection of splits in the training of random forests with an unsupervised 
measure of balance on the training data and an optional quantization step of the split nodes. 
We argue that this reduces the tendency to overfit the training data. The final model trans-
forms the input data into multi-hot encoding and trains a linear classifier to map the novel 
representation to the target domain.

We evaluate our proposed method twofold: First, we show in an extensive experimental 
evaluation on various datasets the superiority of splitting stump forests over random forests 
and state-of-the-art competitive ensemble compression techniques in terms of compression 
rate, inference time, and predictive performance. Second, we highlight a real-world scenario 
where we deploy our SSF models to a small Arduino Mega-2560-R device, showcasing its 
applicability to real-world devices. Moreover, our experiments demonstrate that the selected 
test nodes are informative and not accidental. This article proceeds as follows: We review 

Microcontroller unit Flash memory
Arduino Mega-2560-R 8 KB
ATmega169P 16 KB
Arduino Nano 26-32 KB
Arduino Uno 32 KB
Atmel ATSAM3S2AA-AU 64 KB
Arduino Mega 256 KB

Table 1  Flash Memory on differ-
ent microcontroller units (Branco 
et al., 2019; Atmel, 2016a, b)

 

1 3

  219   Page 2 of 26



Machine Learning         (2025) 114:219 

related work in Section 2. Section 4 provides a detailed description of our method. Section 5 
describes our empirical evaluation of SSFs. Section 6 presents the Arduino implementation 
before Section 7 concludes. Code for splitting stump forests is on github1.

This article is an extended version of Alkhoury and Welke (2024). In the present version, 
we introduce the quantization of the split values, which further reduces the size of the com-
pressed model. Furthermore, we extend our work with an implementation of SSFs for the 
Arduino Mega-2560-R. Both extensions warrant additional experiments.

2  Background

Our proposed random forest compression technique can be alternatively viewed as a model 
compression or representation learning approach. Deploying models on embedded devices 
requires special care. We now review related work in these fields.

2.1  Ensemble compression

The existing methods for ensemble size reduction can be categorized into black box and 
white box approaches. Black box approaches do not assume any particular model architec-
ture. Instead, they work on the set of models in an ensemble without changing individual 
base models. White box approaches update base models, e.g., by pruning individual nodes 
of decision trees in a random forest. We focus our discussion on white box approaches.

Seeking an optimal sub-ensemble within large random forests is often impractical. In 
general, identifying an optimal subset of classifiers with the best generalization perfor-
mance is an NP-complete problem (Partalas et al., 2009). Thus, most approaches identify 
a sub-ensemble with near-optimal performance. Several studies have been conducted on 
the pruning of machine learning models (Li et al., 2017). Moreover, considerable efforts 
concentrated on identifying subsets of random forest nodes that can match the original 
forest’s accuracy. Peterson and Martinez (2009) introduced a post-training technique that 
stores unique subtrees and combines redundant nodes into “parallel nodes” while maintain-
ing the overall behavior. Buschjäger and Morik (2023) introduced an innovative method 
that integrates regularization into the leaf-refinement process. Their proposed algorithm 
jointly prunes and refines trees, thereby enhancing the performance of tree ensembles. Prior 
research has indicated that high diversity among ensemble models can enhance their gener-
alization performance. Li et al. (2012) select classifiers that both minimize empirical error 
and lead to greater ensemble diversity. Ranking-based strategies sort individual models by 
their associated prediction error and select a few highly ranked members to compose the 
sub-ensemble (Jiang et al., 2017). Nakamura and Sakurada (2019) reduce the number of 
distinct split conditions by sharing a common condition among multiple nodes which allows 
for practical model size reductions. Other studies have found that removing low-impact 
nodes from a decision tree can simplify it while preserving accuracy (Esposito et al., 1997). 
In contrast, our approach constructs a new ensemble that contains more but smaller trees 
than the original ensemble. Ren et al. (2015) enhance the fitting power of a tree ensemble 
model by global leaf value refinement using linear regression. Through global optimiza-

1 ​h​t​t​p​s​:​​/​/​g​i​t​​h​u​b​.​c​o​​m​/​F​o​​u​a​d​A​l​​k​h​o​u​r​​y​/​S​p​l​i​​t​t​i​n​​g​S​t​u​m​p​s​F​o​r​e​s​t​s​/
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tion, the approach iteratively merges insignificant pairs of adjacent leaves, effectively using 
complementary information from multiple trees and reducing model size.

2.2  Representation learning

Decision trees and random forests can be interpreted as representation learning (Bengio et 
al., 2013), with studies exploring the use of a pre-trained random forest’s transformed space 
as input for linear models. Likewise, Nakano et al. (2022) integrate a representation learn-
ing component into the random forest methodology. Their method treats ensemble nodes 
as clusters formed by instances during recursive partitioning. Then it creates a binary vec-
tor where each element corresponds to a cluster node and is set to 1 if a training instance 
traverses the node. This newly created tree embedding is then combined with the original 
feature set. Welke et al. (2021) identify frequent subtrees in a trained random forest and 
train a linear model on the resulting multi-hot leaf representation. Vens and Costa (2011) use 
the encoding of nodes visited by data instances. The final feature encoding is obtained by 
concatenating the binary vectors of all trees in the forest. Estruch et al. (2004) leverage the 
common components within decision tree ensembles. In this structure, the rejected splits are 
not discarded but stored as suspended nodes. This allows these nodes to be further explored, 
allowing the generation of new models.

2.3  Model deployment

The deployment of tree ensembles on embedded systems requires not only reducing the size 
of the ensemble but also careful consideration of the implementation strategy. In virtually 
all modern programming languages, decision trees can be implemented either as a sequence 
of nested if-else statements or in a ‘native’-style format that stores decision nodes in an 
array of structs, which are traversed using a loop. Both approaches offer distinct trade-offs 
in terms of memory layout and runtime performance. Based on a probabilistic view of DT 
execution, (Buschjäger & Morik, 2017; Buschjaeger et al., 2018) systematically investigate 
these implementations and propose optimal memory layouts for both, aiming to reduce 
cache misses and to accelerate execution. Additionally, Hakert et al. (2024) introduce FLInt, 
a floating-point comparison operator that replaces traditional floating-point comparisons 
with integer and logic operations focused on if-else implementations. Beyond these clas-
sical styles, dedicated inference strategies have also emerged. One notable example is 
QuickScorer (Lucchese et al., 2015), which restructures the evaluation process by decom-
posing the forest into individual decision nodes. These are processed using efficient bitvec-
tor operations and bitvector comparisons, thereby improving cache locality and enabling 
vectorization. Extensions of this idea, such as RapidScorer (Ye et al., 2018) and parallel tree 
traversal methods (Lettich et al., 2018), further push the efficiency of ensemble execution. 
Finally, with the increasing availability of tensor-based hardware such as GPUs and TPUs, 
new execution paradigms have been proposed. Nakandala et al. (2020) introduce a ten-
sor compiler that translates decision tree ensembles into matrix-vector operations, enabling 
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their efficient execution on parallel hardware designed for deep learning workloads. We 
view these approaches as orthogonal to our work, as smaller forests benefit from a more 
refined implementation and vice versa.

3  Notation

In what follows, we consider a supervised learning problem where the instance space is 
X ⊆ Rd and the target space is Y ⊆ R. Each data point x ∈ X  is a d-dimensional vector 
described by a set of features and mapped to the corresponding label y ∈ Y . The goal is to 
find a function f : X → R such that the difference between f(x) and the true label y is mini-
mal for all x, y ∼ D where D is a distribution on X × Y . Labeled instances Xtrain ⊆ X  are 
provided during training, while unlabeled instances Xtest ⊆ X  are provided during testing. 
In this paper, we apply our approach to classification tasks, but an extension to regression 
problems is possible.

We call the root and all internal nodes of a decision tree test nodes. Test nodes are labeled 
with a split condition xa ≤ sv  for a given attribute a and a split value sv ∈ R. In this work, 
test nodes have exactly two children, called left and right. When the split condition of node v 
for an instance x ∈ X  evaluates to true, the instance passes to the left child of v. An instance 
x recursively traverses the decision tree, following a path from the root to a leaf. These paths 
represent conjunctions of attribute tests, and the union of these paths constitutes the entire 
decision tree. Existing algorithms such as CART, ID3, and C4.5 can recursively divide the 
instance space into smaller subspaces to learn decision trees from labeled data Breiman et 
al. (1984); Quinlan (1986, 1993). A random forest classifier F = {Tj |j ∈ [1, t]} consists of 
a set of t decision trees and an aggregation function to combine individual predictions, e.g., 
majority vote. For a comprehensive background on random forest and decision tree algo-
rithms, refer to Breiman (2001) and Quinlan (1986).

4  The splitting stump forests method

In this section, we provide a description of our splitting stump forests method to extract a 
compact model from a potentially large random forest. Given a trained random forest, we 
(1) compute a score for each node and select nodes with high scores (Sect. 4.1). Our selec-
tion technique prioritizes split values that yield balanced subtrees. Subsequently, we (2) 
refine selected nodes by reducing split value precision, thus achieving a trade-off between 
model size and accuracy (Sect.  4.2). Afterwards, we (3) construct one decision tree per 
selected node and form an ensemble of stumps (Sect. 4.3). Finally, our approach (4) inte-
grates a representation learning module by using the transformed space derived from the 
constructed ensemble as input for a linear model (Sect. 4.4). Figure 1 shows the pipeline of 
the primary steps, which we will describe in turn. Algorithm 1 shows the pseudocode of the 
first three steps.

1 3
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Algorithm 1  Splitting stump forest transformation

4.1  Splitting node selection

The aim of the first step is to select a subset of balanced splits from a trained random for-
est F. Technically, we propose a post-hoc selection criterion that favors split conditions 

Fig. 1  Splitting stump forests at a glance. Given a random forest (left), selected nodes are selected (mid-
dle) and used as stumps (right). A training example is then transformed into a binary vector by the stumps 
and fed to a linear model
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that lead to balanced splits. In particular, for all T ∈ F  and for all nodes v of T, we count 
the number of incoming training points that evaluate to true Xt

v  (resp. false Xf
v ) using 

the split condition at node v (Line 6 of Algorithm 1). The score of a node v is calculated 
as: score(v) ← min(|Xt

v|,|Xf
v |)

|Xt
v|+|Xf

v |
. For instance, when the condition evaluates to True for 6 

samples out of 15 at a test node v, then the score would be 0.4. To qualify as balanced, v 
should attain a score that meets or exceeds a predetermined threshold p (Lines 7–8). Sub-
sequently, we define F[p] as the set of all nodes v with score(v) ≥ p (Line 11). In deep 
random forests, we can limit the size of F[p] by arranging the scores in descending order 
and selecting a specific number of nodes with the highest scores. In a binary decision tree, 
score(v) ∈ [0, 0.5] and higher values indicate a better division of training samples into two 
sub-samples of comparable sizes. Figure 2 shows the selection process on a small random 
forest. For efficient computation of score(v), we store the count of training examples travers-
ing tree edges during training. Alternatively, the counts can be derived by a single pass over 
an independent dataset that does not require labeling. Once these numbers are accessible, 
scores can be computed in constant time and high-scoring nodes can be selected by a single 
sweep across the random forest. Duplicate split conditions can be efficiently removed using 
an appropriate set data structure for F[p].

Note that a scoring function for decision stump learning with a similar formula was 
introduced by Iba and Langley (1992). In contrast to our work, however, their score replaces 
e.g. the Gini index in decision stump learning and directly compares against the class label, 
while here we score a node in a decision tree based on the balance of training samples 
between its left and right branches. The most common way to train random forests is based 
on bagging the training data and then using a recursive algorithm (e.g. CART or ID3) with 
a Gini-index or mutual-information based split criterion selection. This reduces the variance 
of the predictions of the resulting model, but tends to increase the complexity of the model. 
Figure 3 shows the decision boundaries of trained random forests on two-dimensional fea-
ture-subsets of the statlog and rice datasets. In our two examples, the focus on pure splits 
in combination with voting results in the partition of the feature space into rather small and 
discontinuous regions. We argue that this may be detrimental to generalization and that 
simpler models may be found that yield similar performance at smaller sizes. Small regions 
can arise when split criteria cut off a relatively small portion of the training data with pure 
labels. When the split condition of a node v evaluates to true (or false) for most incoming 

Fig. 2  A random forest F consisting of two decision trees T1 and T2. Round nodes represent leaves, rect-
angular nodes represent test nodes. The left (right) edge label represents the fraction of training instances 
evaluating true (false). Selected nodes in F[p] for filtering threshold p = 0.2, are blue
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training points Xv ⊆ Xtrain, it leads to imbalanced subsets at the deeper level of the tree. 
These imbalanced subsets consist of a nearly pure and relatively small subset, thus facilitat-
ing good prediction on the training set, but also may cause overfitting and can increase sen-
sitivity to noise and outliers. Conversely, the other branch typically contains a large subset. 
This results in deeper trees, longer inference times, and reduced human readability (Leroux 
et al., 2018; Thakur et al., 2010). Moreover, this behavior can negatively impact prediction 
accuracy as the algorithm prioritizes outliers or errors less relevant in the generalization 
process creating overly specific rules based on limited information. In this study, we investi-
gate the effect of choosing attribute-value combinations that result in balanced splits. These 
combinations of balanced splits empirically facilitate good data partitioning, thereby help-
ing learners avoid overfitting (Bringmann & Zimmermann, 2007). Figure 3 shows the deci-
sion boundaries of our corresponding splitting stump forests. In these illustrative examples, 
selecting nodes that lead to balanced splits for SSF increases the sizes of the continuous 
regions while reducing overall model size and maintaining similar predictive performance 
of the resulting model.

4.2  Quantization of selected nodes

The test nodes selected in the previous step serve as the basis for the model which we will 
construct and explain in the following steps. However, a large number of these test nodes 
can significantly increase model complexity and computational cost, especially in embed-
ded devices, where floating-point operations are expensive. To address this, we propose to 
use an optional node quantization technique that merges test nodes by rounding split values 
to a controlled level of decimal precision. By approximating split values, we effectively 
prune redundant test nodes, leading to a more compact and efficient model. Prior work by 
Koschel et al., (2023) propose to use fixed-point quantization when using the QuickScorer 
algorithm on ARM devices. We adapt this approach to our setting focusing on test nodes: In 
particular, for all test nodes (xa ≤ sv) selected in the previous step from the random forest 
model for a given attribute xa and a split value sv ∈ R, we apply a rounding function that 
maps splitting values to q decimal places: s′

v = round(sv, q) (Line  9). Nodes with identical 
rounded values are merged into a single node, reducing model complexity. Notably, scaling 
split values and data points by 10q , transforms all split values into integers, enabling effi-
cient integer-based comparisons on hardware. This significantly improves execution speed 
on embedded devices, where floating-point operations are computationally expensive.

Fig. 3  Example of decision boundaries in data classification between random forests (RF) and the pro-
posed splitting stump forests (SSF) on two-dimensional projections of two datasets. SSF achieves a com-
parable accuracy using only 0.002 of the total nodes employed by the RF method
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4.3  Splitting stump transformation

So far, we have selected a set of test nodes, which currently lack subtrees or leaf nodes. 
More formally, F[p], the result of the previous step, is a set of isolated vertices, each con-
sisting of a feature and split value, but no children. By attaching two leaves to each node 
v ∈ F [p], we transform v into the root of a decision tree T ′

v  of depth one (line 13). These 
decision trees can be viewed as learning a new data representation that maps a data point to 
a set of leaves. For each decision tree T ′

v  in the new ensemble F ′ of size k, we define a map-
ping function fT ′

v
: Rd → {0, 1} that returns one if and only if the split condition in node 

v evaluates to true on x (line 17). For F ′, we thus construct a function fF ′ : Rd → {0, 1}k 
which maps x to a new feature vector {fT ′

vi
(x)}k

i=1. That is, each training point x is embed-
ded into the concatenation of features (ones and zeros) resulting from the stumps (line 19). 
Using fT ′

v
 instead of the two leaf features of T ′

v  is sufficient due to the perfect correlation 
between the two leaf features resulting from each stump T ′

v .

4.4  Training of splitting stump forests

To enable deployment to devices with limited resources, we use a linear model to combine 
the individual predictions of the decision trees in F ′. We apply logistic regression to model 
the relationship between the new feature vectors fF ′ (x) and the target variable. The result-
ing model is both resource-efficient and easy to interpret. Conceptually, this step can be seen 
as simultaneously learning the leaf node assignments of all decision stumps and the voting 
scheme of the resulting random forest. Following the pruning of the random forest, similar 
post-training approaches have been shown to work well (Ren et al., 2015; Buschjäger & 
Morik, 2023). Consider a single splitting stump T ′

v: Training a logistic regression classifier 
on one-hot encoded representations fT ′

v
 assigns a weight to each of the two dimensions that, 

for binary classification, corresponds to the likelihood of belonging to the target class. A 
similar approach works for regression tasks using a linear regression learner.

5  Experiments

We first evaluate the proposed method by analyzing its accuracy and efficiency. Then, in 
Section 6, we examine its deployment on embedded devices, focusing on memory usage 
and performance.

To assess the method’s performance, we conducted experiments on 13 benchmark clas-
sification datasets with varying properties, primarily from the UCI repository (Adult, Letter 
Recognition, MAGIC, Spambase, Statlog, Waveform) (Dua & Graff, 2017), ALOI (Geuse-
broek et al., 2005), Bank (Moro et al., 2014), Credit Card (Yeh & Lien, 2009), Dry Bean 
(Koklu & Ozkan, 2020), Rice (Cinar & Koklu, 2019), Room (Singh et al., 2018) and Shop-
pers (Sakar et al., 2019). This diverse selection enables the evaluation across varying com-
plexities. Table 4 in the appendices presents details of the datasets. To evaluate the splitting 
stump forests approach (SSF), we perform a comparative analysis against the random forest 
(RF), the baseline cost complexity pruning (CCP) (Breiman et al., 1984), and four state-
of-the-art compression methods: the global refinement approach (LR) (Ren et al., 2015)2, 

2 available at github.com/gereleth/kaggle-telstra
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the joint leaf refinement and ensemble pruning (LR+L1) (Buschjäger & Morik, 2023)3, 
the diversity regularized ensemble pruning method (DREP) (Li et al., 2012), and the indi-
vidual error pruning method (IE) (Jiang et al., 2017)4. We train random forests, using the 
Gini index reduction for splitting, by varying the maximum depth d of individual decision 
trees among d ∈ {5, 10, 15} and the number t of decision trees among t ∈ {16, 32, 64}. The 
same d and t values are adopted as in the SSF method for each approach being compared. 
To determine optimal parameters, we conduct a grid search for each method. We perform 
5-fold cross-validation and report the average accuracy achieved on test data for each d. The 
threshold parameter p is set to values {0.05, 0.1, ..., 0.4, 0.45}. Code for SSF and all experi-
ments is accessible online.5

5.1  Comparative analysis of performance and efficiency

We report the average test accuracy, the number of nodes (test nodes and leaves), and the pre-
diction time, also referred to as inference time, based on simulations conducted on a laptop 
with Intel Core i7-1165G7 processor. In sect. 6 we will discuss inference time on an Arduino 
embedded device. Table 2 presents a summary of this experiment, displaying the average 
ranking achieved by each method across the 13 datasets. This mean ranking demonstrates 
the consistent superiority of the SSF approach, with respective global rankings of 2.26, 

3 available at ​g​i​t​h​u​b​.​c​o​m​/​s​b​u​s​c​h​j​a​e​g​e​r​/​l​e​a​f​-​r​e​f​i​n​e​m​e​n​t​-​e​x​p​e​r​i​m​e​n​t​s

4 both available at github.com/sbuschjaeger/PyPruning
5 ​h​t​t​p​s​:​​​/​​/​g​i​t​h​u​​b​.​c​o​​m​/​F​​o​u​a​d​A​​l​k​h​o​u​​​r​y​/​S​p​​l​i​t​t​​i​n​g​S​t​u​m​p​s​F​o​r​e​s​t​s​/

Method d=5 d=10 d=15 Global
RF Acc. 5 4.69 3.23 4.31

Size 7 7 7 7
Inf. 6.08 5.46 5.46 5.67

CCP Acc. 6.46 6.62 6.85 6.64
Size 4 2.38 1.85 2.74
Inf. 4.69 3.54 3.46 3.90

DREP Acc. 4.23 3.62 3.69 3.85
Size 3.62 4.69 5 4.44
Inf. 3.07 3.08 2.85 3

IE Acc. 4 3.23 3.38 3.54
Size 3.69 4.54 5.08 4.43
Inf. 2.92 3.23 2.92 3.03

LR Acc. 2.69 3.15 4.38 3.41
Size 5.23 4.77 4.85 4.95
Inf. 4.92 6.77 6.69 6.13

LR+L1 Acc. 2.23 2.77 2.69 2.56
Size 3.38 3.46 3 3.28
Inf. 6 4.85 5.15 5.33

SSF Acc. 2 2.38 2.39 2.26
Size 1.23 1.15 1.30 1.23
Inf. 1.69 1.69 1.92 1.77

Table 2  Average rankings of 
methods across 13 datasets based 
on accuracy, compression ratio, 
and inference time for each depth

Here, rank one is assigned to 
the best-performing method and 
rank seven to the worst. The 
last column shows the global 
ranking across all depths and 
datasets. The best (lowest) 
average rankings are shown in 
bold
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1.23, and 1.77 concerning predictive performance, model size compression, and inference 
time. In terms of predictive performance, SSF outperforms original random forests (RF) and 
state-of-the-art methods in 22 out of 39 runs (across 13 datasets, each with three maximum 
depth values). In most other runs, SSF accuracy is within 1% of the top-performing model. 
SSF significantly reduces model size by two to three orders of magnitude compared to other 
methods and achieves the best compression ratio in 32 out of 39 runs, achieving a global 
ranking of 1.23. Considering the mean ranking, SSF exhibits a marginal improvement in 
predictive performance compared to the LR+L1 method, while consistently excelling in 
reducing model size. Inference time for SSF is faster than the best-performing models of 
competing methods in 31 out of 39 runs, achieving a global ranking of 1.77. Scoring and 
selecting nodes in SSF training is efficiently done through a preorder tree traversal, with a 
time complexity of O(n) where n is the number of nodes in the random forest if we store a 
record of the training examples that traverse edges during random forest training. Looking 
at Fig. 4, we note that the SSF outperforms competing methods in model size and inference 
time across all datasets while achieving the best or second-best levels of accuracy. Detailed 
results on accuracy, compression, and inference time are in Tables 6, 7, 8 in the appendi-
ces. To isolate the effect of the linear model, we trained logistic regression directly on the 
original input features. Across all datasets, SSF achieved an average accuracy improvement 
of 3.5% over this baseline. This highlights the contribution of the selected splitting stumps 
beyond the linear classifier alone. Detailed results of this experiment are shown in Table 5 
in the appendices.

5.2  Predictive performance on a space budget

Motivated by space constraints on small embedded devices, we analyze the performance 
of SSF and the competitive ensemble pruning methods in a space budget. To that end, we 
explore various random forest configurations with d ∈ {5, 10, 15}, t ∈ {8, 16, 32, 64}, and 
the corresponding parameters for each competitive method, evaluating predictive perfor-
mance and model size (node count) for each configuration. To accommodate devices with 
limited storage capacity, we select the best models that can fit within 32 KB or 16 KB of 
memory. Such models are suitable for deployment on microcontroller units like the Arduino 
Uno and ATmega169P. We estimate the model size using the baseline implementation of 

Fig. 4  The figure shows the highest test accuracy achieved with a maximum depth d = 5, along with its 
associated compression ratio and inference time, for each method and dataset
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decision trees established by Buschjäger and Morik (2021) and applied in subsequent stud-
ies (Buschjäger & Morik, 2023). This implementation indicates that each node requires 
17 + 4C bytes of memory, where C represents the number of classes.

Figure 5 shows that SSF models outperform RF models across all datasets. Notably, this 
improvement exceeds 3% in five datasets. Particularly in multi-classification tasks like the 
letter recognition dataset (26 classes) and the dry bean dataset (7 classes), the improvement 
is significant, due to the complexity of multi-class problems (Yan et al., 2020). In these 
tasks, deep random forests excel in capturing the complex decision boundaries necessary for 
reasonable accuracy. However, the best random forest model for the letter dataset requires 4 
MB of memory, exceeding the IoT device’s budget. Thus, we recommend using SSF mod-
els (of size below 10 KB in most datasets) for multi-classification tasks. Then, we employ 
the post-hoc Friedman test methodology as outlined by Demšar (2006) for 32 KB and 16 
KB budgets to check for statistically significant performance differences among the seven 
examined methods. We formulate the null hypothesis as all methods perform equally well 
without significant differences. The Friedman test ranks the methods for each dataset and 
each of 5 runs, assigning the top-performing method a rank of 1, the second-best a rank of 
2, and so forth. This test determines whether the average ranks significantly deviate from 
the expected mean rank of 4. Average ranks provide a useful comparison of the methods, as 
illustrated in Table 9 in the appendices. Notably, the computed p-values for both 32 and 16 
KB scenarios are 5.8 × 10−40 and 2.14 × 10−41 respectively, leading to the rejection of the 
null hypothesis at a highly significant level. As statistical significance is revealed, we apply 
a post-hoc procedure for multiple comparisons as proposed by García et al. (2010). Using 
the Conover Test, we conduct 21 pairwise comparisons among the seven methods, at confi-
dence levels of 95%, 99%, and 99.9%. Figure 6 demonstrates that both SSF and LR+L1 sig-
nificantly deviate from the other 5 methods at the highest confidence level p-value < 0.001 
in both the 32 and 16 KB scenarios. Moreover, the computed p-value between the SSF and 
LR+L1 is 1.1 × 10−2 in the 16 KB scenario, indicating that SSF outperforms LR+L1 with 
95% confidence on memory-limited devices.

5.3  Compression on a performance budget

As a complementary experiment, we explore compression while tolerating a slight drop in 
accuracy. We identify the smallest SSF model within a 2% accuracy margin compared to the 
RF model with varying values of d and t. For a relatively small RF with d = 5 and t = 16, 
we achieve an average compression rate of 0.04 across all datasets. Moreover, as the ran-

Fig. 5  The plot shows the best 
model attained by RF and SSF 
with a final model size below 
32 KB
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dom forest size increases, so does the compression rate for most datasets. Notably, the SSF 
method yields compression values of 0.012, 0.02 and 0.017 for the spambase, shoppers, and 
adult datasets, respectively, under the random forest configuration with d = 15 and t = 64; 
see Fig. 7.

5.4  Optimizing accuracy versus compression

To validate our assumption regarding the informativeness of nodes with highly balanced 
branches, and as our problem involves balancing a trade-off between the predictive perfor-
mance and model compression, we investigate the impact of varying filtering thresholds p 
on the trade-off between the two objectives. In particular, we examine the Pareto frontier 
which enables us to concentrate on the set of efficient choices of p known as non-dominated 
solutions (Lin, 1976).

A Pareto-optimal filtering threshold p∗ is where we cannot find another p that improves 
accuracy without sacrificing compression, or vice versa. We determine the set of Pareto-
optimal points for each dataset and for each RF setting d ∈ {5, 10, 15} and t ∈ {16, 32, 64}. 

Fig. 7  The plot shows the compression ratio achieved in the datasets adult, shoppers, spambase (left to 
right) while permitting a 2% accuracy drop

 

Fig. 6  Pairwise comparisons through a Conover test between the top-performing models under 16 KB 
(left) and 32 KB (right)
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Next, we compute the frequency of each threshold p in the Pareto-optimal set, focusing 
on data points achieving accuracy within 2% of the original RF accuracy. Omitting this 
step would result in any data point with the maximum threshold of 0.45 being incorrectly 
classified as Pareto-optimal, given the monotonically increasing nature of the compression 
function. The findings, as shown in Fig. 8, indicate that the threshold p = 0.45 exhibits 
Pareto-optimality in 71% of the experiments, while p = 0.40 demonstrates Pareto-optimal-
ity in 30% of the cases. The other thresholds are Pareto-optimal in about 20%, except for 
p = 0.05 in only 7% of runs. Our findings support our assumption that test nodes with 
high splitting power, like those with p = 0.45, provide more information than nodes with 
low splitting power. These high-scoring nodes represent only a small fraction of the entire 
nodes set in the random forest, producing well-balanced branches, and resulting in a highly 
accurate and compact model.

We validate the informativeness of our selected nodes by comparing their predictive 
performance to that of a randomly selected sample of the same size. For a given dataset 
D, we report the accuracy and number of selected nodes n using the parameters: d = 15, 
t = 64, p = 0.4. Then we randomly sample n nodes from the entire node set i.e. this case 
corresponds to p = 0.0. These nodes are then transformed into splitting stumps, and we pro-
ceed to train a linear model using their data representation. To ensure experiment validity, 
we repeat sampling ten times and calculate the mean and standard deviation. We conduct 
two additional experiments: one where we sample n nodes that achieve a score better than 
p = 0.2, and another where we sample n nodes with scores less than p = 0.1. Comparing 
the predictive performance of score-based splitting stumps with p = 0.4 against sampling-
based stumps, we find that score-based stumps tend to perform better across most datasets, 
as shown in Fig.  9. These high-scoring stumps also outperform equivalent-sized sets of 
lower-scoring nodes, both those with scores of greater than p = 0.2, and those with scores 
less than p = 0.1, reinforcing our assumption that nodes with higher splitting power provide 
more information.

Fig. 8  The figure shows Pareto Frontier results for the min/max objectives compression ratio and accu-
racy. The left plot shows the percentage of experiments in which p is non-dominated by another p′ in vari-
ous problem settings d ∈ {5, 10, 15}, t ∈ {16, 32, 64}. Right, we exemplarily show the non-dominated 
thresholds in red, and dominated ones in blue on adult, t = 64, d = 10
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5.5  Impact of stump quantization

We conduct experiments across multiple datasets to evaluate the impact of decision stump 
quantization (cf. Sect. 4.2). Adjusting the decimal precision parameter q, we can control the 
complexity of the model according to hardware constraints and application needs. As we 
progressively reduce precision by keeping q = 4, 3, 2, 1, 0 decimal places of the split values, 
the number of unique stumps (and hence the SSF size) decreases, with only a slight drop in 
accuracy. Figure 10 shows the accuracy against the compression ratio of quantized models. 
Similarly, on Rice, accuracy holds up until q = 3, and on Waveform, rounding to q = 2 
retains performance within the RF accuracy range. These results show that stump quantiza-
tion significantly reduces model size without compromising accuracy, making it well-suited 
for resource-constrained environments.

Fig. 10  Impact of stump refinement across multiple datasets (Spambase, Waveform, and Rice). The fig-
ure shows the trade-off between model size and accuracy as we progressively round the split values. It 
includes standard deviation in both accuracy and size (shown as error ellipses). The red dotted lines repre-
sents the RF accuracy ± standard deviation, highlighting the range within which refined models maintain 
comparable performance while reducing model size

 

Fig. 9  Comparison of the predic-
tive performance of the splitting 
stumps when p = 0.4, p = 0.2, 
sampling-based stumps of all 
scores, and low-scoring stumps 
(≤ p = 0.1). We report the mean 
and standard deviation of 10 
random samples
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6  Test case: SSF deployment on arduino

To systemically explore the limits of SSF deployment on resource-constrained devices, we 
conduct experiments on the Arduino Mega-2560-R3 (Atmel, 2025), which is limited to 8KB 
of SRAM. We test various configurations and record the highest achievable accuracy that 
can be achieved within the available memory constraints. During deployment, the Arduino 
receives the decision stumps, the Logistic Regression (LR) model parameters (weights and 
bias), and the test points. Each test point is first transformed into a new data representation 
based on the selected stumps before being processed by the LR model. The transformed 
data is then multiplied by the LR parameters to generate the final prediction. The memory 
footprint of an SSF model deployed on the Arduino is primarily influenced by the number 
of decision stumps and the number of classes in the dataset, both of which affect the storage 
requirements for the LR model. As the number of stumps increases, additional memory is 
required to store the corresponding weights and bias. Additionally, memory usage is affected 
by the number of test points and their feature dimensions. In our implementation, each deci-
sion stump requires 25 bytes for binary classification (C = 2), calculated as 17 + 4C. In 
multiclass classification tasks where C > 2, the memory requirement per stump increases 
to 17 + 8C bytes. Additionally, feature representation impacts memory consumption, as 
all floating-point numbers are stored using 4 bytes per value. Consequently, each test point 
consisting of |F| features requires an additional 4|F| bytes. Each model requires also a base 
overhead of around 300 bytes. The total RAM consumption for a binary classification task 
is therefore: RAMused = 300 + (17 + 4 × C) × |S| + 4 × |F | × |X| where C is the num-
ber of classes, |S| is the number of decision stumps, |F| is the number of features, and |X| is 
the number of test points used during inference. Experimental results, illustrated in Table 
3, demonstrate that SSF models consistently outperform RF models when deployed on 
devices with an 8 KB SRAM constraint. While the transformation of test points into the 
new data representation and the subsequent LR prediction introduce additional computa-
tional overhead, accuracy remains the most critical factor in many real-world applications. 
Future work will focus on optimizing the SSF implementation to enhance efficiency and 
reduce inference time while maintaining its accuracy advantage. To measure energy con-

Table 3  The table presents the highest-performing SSF model and RF model deployed on the Arduino Mega 
2560 (8KB RAM), highlighting its accuracy, model size, time needed to transform a testing point using the 
constructed ensemble of stumps, inference time per test point, and energy consumption per prediction
Dataset SSF RF

Size 
(KB)

Acc. (%) Trans-
form. 
(ms)

Inf. (ms) Energy 
(mJ)

Size 
(KB)

Acc. (%) Inf. 
(ms)

En-
ergy 
(mJ)

Shoppers 5.43 91.10 10.91 25.23 1.01 5.67 88.21 1.6 0.04
Spambase 5.12 93.56 8.80 16.53 0.58 6.06 91.69 2.4 0.06
Adult 5.44 85.88 11.13 19.16 0.69 5.54 82.27 1.8 0.04
Drybean 6.55 90.01 4.72 27.49 0.68 6.21 78.84 2.9 0.07
Letter 6.36 65.28 1.62 28.21 0.63 7.25 45.35 9.1 0.21
Rice 4.95 91.39 10.08 21.44 0.69 5.84 91.07 1.4 0.03
Room 5.64 99.75 5.59 23.42 0.61 5.28 98.82 2.1 0.05
Magic 5.04 85.28 9.40 26.49 0.68 5.55 83.09 1.6 0.04
Credit 4.33 82.52 8.33 17.93 0.53 5.84 81.76 1.8 0.04
For each dataset, the highest accuracy is indicated in bold
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sumption during inference, we employ a USB meter to record the power difference between 
the Arduino’s idle and inference state. Power is calculated as P = I · V , where I is current, 
and V is voltage, and energy per prediction as E = P · t, where t is the inference time. Code 
for SSF deployment on Arduino is on github6.

7  Conclusion

We introduced Splitting Stump Forests, an approach that extracts nodes from a trained ran-
dom forest based on their splitting capabilities. Subsequently, we constructed decision trees 
for high-scoring nodes, that are optionally quantized by rounding the split values and trained 
a linear model over the derived data representations. Our extensive empirical tests indicate 
significant reductions in model size and improved inference speed without sacrificing accu-
racy across diverse datasets. We conducted a comprehensive comparison with competing 
methods and an ablation study of our split criterion. Moreover, a deployment study on an 
Arduino Mega-2560-R with only 8 KM of memory showed the applicability of our meth-
ods in real-world scenarios. Our encouraging experimental findings revealed our method’s 
superiority in model size compression and inference time acceleration while maintaining a 
comparable level of predictive performance. These outcomes raise interesting directions for 
future research. In particular, to develop practical deployment strategies, ensuring that the 
benefits of model compression can be fully realized in real-world applications following the 
ongoing integration of machine learning models in edge devices.

Detailed experimental results

Table 4 presents the details of the used datasets in our experiments. Table 5 compares the 
classification accuracy of logistic regression with that of the SSF model across different 
tree depths. Further insights are provided in Tables 6,  7,  8, which report test accuracy, 
compression ratio, and inference time (in ms) for each method and each dataset across three 
different depth values d ∈ {5, 10, 15}. RF Size denotes the number of nodes, and the com-
pression ratio is calculated by dividing the number of nodes in the corresponding model by 
the original random forest size. Bold entries highlight the best values achieved per dataset. 
Finally, Table 9 summarizes the best accuracies achieved with a model size below 16 KB 
and 32 KB.

Parameters selection across methods

Cost complexity pruning method

To identify the optimal parameters for the CCP baseline method, we conduct a 
grid search involving the parameter ccp_alpha ∈ {0.005, 0.01, 0.015, 0.02} and 
min_samples_leaf ∈ {1, 5, 10, 20}. It’s worth noticing that increasing the ccp_alpha 

6 https://github.com/sbuschjaeger/mlgen3
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Dataset Log. Reg. SSF (d = 5) SSF (d = 10) SSF (d = 15)
Adult 0.828 0.866 0.861 0.858
Aloi 0.97 0.97 0.97 0.971
Bank 0.899 0.898 0.898 0.902
Credit 0.808 0.811 0.814 0.814
Drybean 0.847 0.898 0.914 0.907
Letter 0.773 0.92 0.929 0.93
Magic 0.805 0.836 0.839 0.831
Rice 0.919 0.937 0.939 0.935
Room 0.990 0.998 0.998 0.999
Shopping 0.875 0.901 0.901 0.905
Spambase 0.922 0.945 0.953 0.947
Satlog 0.802 0.874 0.875 0.874
Waveform 0.969 0.971 0.971 0.975

Table 5  Classification accuracy 
of logistic regression and SSF 
at different tree depths (d = 5, 
d = 10, and d = 15)

 

Dataset #Instances #Attributes #Classes Date
Adult Dua and 
Graff (2017)

48842 14 2 1996

ALOI Geuse-
broek et al. 
(2005)

50000 27 2 2005

Bank Moro et al. 
(2014)

45211 17 2 2012

Credit Card Yeh 
and Lien (2009)

30000 24 2 2009

Dry Bean Koklu 
and Ozkan 
(2020)

13611 17 7 2020

Letter Rec. Dua 
and Graff (2017)

20000 16 26 1991

MAGIC Dua and 
Graff (2017)

19020 11 2 2007

Rice Cinar and 
Koklu (2019)

3810 8 2 2019

Room Singh et 
al. (2018)

10129 16 4 2018

Shoppers Sakar 
et al. (2019)

12330 18 2 2019

Spambase Dua 
and Graff (2017)

4601 57 2 1999

Statlog Dua and 
Graff (2017)

6435 36 7 1993

Waveform Dua 
and Graff (2017)

3443 21 2 1988

Table 4  We report sources, 
number of instances, number of 
attributes, number of classes, and 
dates for the datasets used
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value increases the number of pruned nodes while min_samples_leaf  defines the mini-
mum data points required in a leaf node.

Diversity regularized ensemble pruning

We varied the balance hyperparameter ρ ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5} 
that controls the fraction of classifiers considered when minimizing the empirical error. 
Larger values of ρ put more emphasis on the empirical error, while a small ρ pays more 
attention on the diversity.

Individual error pruning

We varied the hyperparameter nl ∈ {26, 27, 28, 29} that controls the maximum number of 
leaf nodes in each individual tree in the random forest.

Global refinement of random forest

We varied the hyperparameter nt ∈ {23, 24, 25} that controls the number of selected trees 
from the random forest. Each pruning process ran for 25 and 50 epochs.

Joint leaf-refinement and ensemble pruning through L1 regularization

We varied the number of selected trees from the random forest hyperparameter 
nt ∈ {23, 24, 25, 26}. We ran the experiment for 25 and 50 epochs. The regularization 
strength varied between {0.1, 0.2, ..., 0.9}.
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