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A B S T R A C T

Nonwoven materials consist of random fiber structures. They are essential to diverse application areas such as
clothing, insulation and filtering. A long term goal in industry is the simulation-based optimization of material
properties in dependence of the manufacturing parameters. Recent works developed a framework to predict
tensile strength properties representing the fiber structure as a stochastic graph. In this paper we present an
efficient machine learning approach using a regression model trained on features extracted from the graph,
for which we develop a novel graph stretching algorithm. We demonstrate that applying our method to a
practically relevant dataset yields similar prediction results as the original ODE approach (𝑅2 = 0.98), while
achieving a significant speedup by up to three orders of magnitude. This opens the field to optimization, as
Monte Carlo simulations accounting for the stochastic nature of nonwovens become easily accessible. Our
model generalizes well to unseen parameter combinations. Additionally, our approach produces interpretable
results by using a simple linear model for the regression task.
. Introduction

Nonwoven materials are random fiber structures that are bonded
y thermal, chemical, or mechanical means. The main advantage of
uch materials is their fast and cost-efficient production which makes
hem a suitable choice for various applications, including filter and
nsulating materials as well as medical and hygiene products such as
ace masks (Das & Pourdeyhimi, 2014). Aiming for a more sustainable
roduction and an optimal material design with regard to desired fabric
roperties, there is a broad spectrum of research on predicting me-
hanical properties of nonwovens. Since experimental measurements
re far too expensive, computer-based simulation approaches are used
ore frequently. But they involve a high computational effort (Wegener

t al., 2015). Objective of this paper is to demonstrate the use of
achine learning approaches for the prediction of nonwoven material
roperties. Therefore, we exemplarily focus on the tensile strength of
irlay fabricated nonwovens (see Fig. 1(a)–(c)). In particular, we aim
o predict the stress–strain curves commonly used to describe tensile
trength behavior (Dowling, 2013). These curves indicate the relation-
hip between strain and stress measured throughout the experimental
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tensile strength tests (see Fig. 1(d)). In production, the tensile strength
behavior is of significant importance and can decide on the use of the
materials in question, as fabrics with insufficient tensile strength stretch
too easily or even tear rapidly.

Conventionally, determining the tensile strength associated with a
setting of production parameters requires simulating the underlying
production process and the resulting fiber structure’s mechanical be-
havior. Here, we consider the following simulation framework, which
is depicted in Fig. 2: For generating virtual production-like nonwo-
ven samples we rely on Gramsch et al. (2016), who introduced a
stochastic surrogate model for nonwoven airlay production 1⃝. To
predict the resulting fabric’s tensile strength behavior we employ the
model-simulation approach proposed by Harmening et al. (2020). Rep-
resenting the fiber structure by a graph 2⃝ the approach is based
on solving large-scale dynamical systems 3⃝ depending on the graph
topology. The simulation framework allows to map the involved pro-
duction parameters to the resulting nonwovens’ tensile strength 4⃝ and
forms the basis for inverse engineering. However, given the complex
interactions of the many individual fibers involved, a single tensile
ttps://doi.org/10.1016/j.mlwa.2022.100288
eceived 22 October 2021; Received in revised form 10 March 2022; Accepted 10
vailable online 16 March 2022
666-8270/© 2022 The Authors. Published by Elsevier Ltd. This is an open access
http://creativecommons.org/licenses/by/4.0/).
March 2022

article under the CC BY license

https://doi.org/10.1016/j.mlwa.2022.100288
http://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2022.100288&domain=pdf
mailto:dario.antweiler@iais.fraunhofer.de
mailto:harmening@uni-trier.de
mailto:marheineke@uni-trier.de
mailto:andre.schmeisser@itwm.fhg.de
mailto:wegener@itwm.fhg.de
mailto:welke@cs.uni-bonn.de
https://doi.org/10.1016/j.mlwa.2022.100288
http://creativecommons.org/licenses/by/4.0/


D. Antweiler, M. Harmening, N. Marheineke et al. Machine Learning with Applications 8 (2022) 100288

⊛

s
f
r
t
t

a
i
c
l

Fig. 1. Airlaid nonwoven materials’ manufacturing and property testing: (a) simulated fiber dynamics and laydown in turbulent airflow, (b) fiber laydown zone, (c) final product,
(d) tensile strength test for a nonwoven material sample.
Fig. 2. Simulation framework using the stochastic fiber laydown model 1⃝ to generate a representative graph 2⃝ and applying the ODE-solver 3⃝ to calculate the respective
stress–strain curve 4⃝. In this paper we aim to replace the computationally expensive ODE-solver by generating fiber graph features and using an interpretable regression model

to predict the stress–strain curve.
trength simulation is computationally expensive. The costs accumulate
urther due to Monte-Carlo simulations required to account for the
andomness in the fiber structure generation. Repeated evaluation of
he simulation framework, as required for virtual material design, is
hus not possible in a reasonable time frame.

We want to avoid this trap of simulatability in principle and instead
chieve efficient simulations in practice, which can contribute signif-
cantly to the design and optimization of nonwoven production pro-
esses. Hence, we introduce an efficient graph-based surrogate machine
earning approach ⊛ that predicts the tensile strength of virtually gen-

erated fiber structure samples, bypassing the expensive tensile strength
computations for individual samples after an initial training phase. It
uses a regression model trained on features extracted from the graph,
for which we develop a novel graph stretching algorithm. Our approach
reduces the computation time by several orders of magnitude while
yielding prediction results of similar quality. By exploiting insights into
the process, we can constrain the machine learning approach to pro-
duce high-quality results with a simple regression model. Our feasibility
study is performed on a 4-parametric process class and serves as a proof
of concept. The underlying dataset covers a wide range of possible
airlay scenarios. Our work is related to the research area of materials
informatics and an example of informed machine learning (von Rüden
et al., 2021). In the context of nonwoven material design, our approach
is completely new.

We continue with an overview of previous works on tensile strength
simulations of nonwovens and related machine learning approaches
in Section 2. The underlying simulation framework consisting of the
virtual fiber structure generation and the associated tensile strength
determination is presented in Section 3. We discuss our novel surrogate
machine learning approach in Section 4. Section 5 introduces the
characteristics of the training data, describes our experiments, and dis-
cusses empirical findings, before we conclude in Section 6. The 3-part
appendix provides details A) to our novel graph stretching algorithm
including the analysis of correctness and runtime, B) to the model
chain and parameters underlying the simulation framework and the
process class under consideration, and C) to the quality of simulation
and measurement data.
2

2. Related work

Our work belongs to the research areas of materials informatics and
informed machine learning. In this section we comment on related work
regarding the modeling of tensile strength behavior for nonwovens
as well as machine learning approaches that describe the relationship
between production parameters and material properties.

2.1. Tensile strength behavior of nonwoven materials

For virtual fiber structure generation a variety of approaches ex-
ist that mainly come from statistical analysis and stochastic geome-
try (Ohser & Mücklich, 2000; Schladitz et al., 2006) or three-dimensi-
onal volume imaging covering microscopy and X-ray tomography (Faes-
sel et al., 2005; Ohser & Schladitz, 2009). However, realizing material
structures from production parameters requires the simulation of the
whole nonwovens’ production process. Gramsch et al. (2016) estab-
lished a simulation framework for an airlay fabricated nonwoven
composite. To cope with the computational complexity that arises from
several thousand airlaid fibers in a complex machine geometry, the
authors introduce a chain of mathematical models coupled by means
of parameter identification. The models cover a highly turbulent fiber
suspension flow, a stochastic surrogate for the fiber laydown on a
moving conveyor belt and a virtual bonding procedure imitating the
incorporated thermobonding. The suitability of model hierarchies for
the virtual generation of nonwovens and filaments is topic in Wegener
et al. (2015).

A common procedure to predict material properties of nonwovens is
to treat the material as a continuum which enables the use of efficient
finite element methods (Demirci et al., 2011; Farukh et al., 2015).
These approaches do not account for the individual fiber behavior. To
incorporate the randomness in the material’s microstructure they rely
on knowledge of the statistical fiber orientation. Opposed to that, other
approaches consider the material on the fiber-scale (Harmening et al.,
2020; Kufner et al., 2018). Kufner et al. (2018) describe the material’s
structure as an elastic Cosserat network. However, since resolving the
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behavior of the individual fibers of beam type in a virtual material
sample of industrial size is too complex, additional homogenization
techniques are applied (Le Bris, 2010; Raina & Linder, 2014). Har-
mening et al. (2020) model the structure as truss of nonlinear elastic
behavior and reduce the acting stress to the forces on the individ-
ual fiber connections that mainly determine the nonwovens’ tensile
strength behavior. A problem-tailored data reduction strategy and a
singularly perturbed regularization approach make simulations with
samples of industrial size possible. The approach particularly handles
the problem-inherent multiscales (interplay of deterministic structural
effects on macro-scale and random fiber distribution on micro-scale)
and realizes the randomness by Monte-Carlo simulations.

2.2. Related machine learning approaches

We briefly discuss recent approaches to predict woven material
properties from production parameters using machine learning. Early
works used simple neural network architectures to predict the strength
of yarn (Cheng & Adams, 1995) or worsted fabrics (Fan & Hunter,
1998). Both use a large number of measured input parameters and the
neural network model prevents any interpretability of results. Abou-
Nassif (2015) investigates both neural networks as well as linear re-
gression to predict tensile strength of woven fabrics, but is limited to
seven training samples. The approach in Ribeiro et al. (2020) deploys
multiple regression models to predict different material properties of
woven fabrics, but heavily relies on huge datasets and extensive manual
feature selection by subject matter experts. Eltayib et al. (2016) use
linear regression to predict tear strength of fabrics based on yarn count,
yarn tenacity and fabric linear density. Due to the computational com-
plexity of generating training data and their specialization to weaving
features, these approaches cannot predict nonwoven fabric properties.

While much literature exists on woven materials, modeling ap-
proaches for nonwovens remain rare. Rahnama et al. (2013) use a
feed-forward neural network based on a numerical propagation model
to compare heat and moisture propagation through different nonwoven
fabrics. Chen et al. (2007) integrates simple logical rules designed by
domain experts into a neural network to predict elongation at break,
but is limited to a single test example.

Aside from nonwoven fabric production, other works describe ap-
proaches to predict material properties from production parameters.
We focus on those that try to integrate prior knowledge about the
underlying physical mechanics into the data, the model architecture,
or the loss term being optimized. Karpatne et al. (2017) integrate
physical knowledge about feature dependencies as additional loss terms
in a neural network. Lu et al. (2017) introduce an approach closest
to our work by integrating knowledge about the underlying material
mechanics as algebraic formulas into the machine learning approach.
However, with a handcrafted neural network architecture to incorpo-
rate that knowledge, they do not account for interpretable results. We
are not aware of any machine learning approaches predicting material
properties for nonwoven fiber fabrics based on machine parameters. For
recent surveys on the combination of machine learning and simulation
approaches in a more general context, see von Rüden et al. (2021,
2020).

3. Problem statement

The airlay production process of nonwoven fiber materials typi-
cally uses different types of fiber material, such as synthetic fibers or
reclaimed textile waste. The fibers exit from a rotating drum into a tur-
bulent airflow and are blown onto a moving conveyor belt where they
form a three-dimensional random nonwoven structure (cf. Fig. 1(a),(b)).
During a heating treatment, the single fibers develop bonds and build
the final product. The nonwoven material is characterized by the
interplay of structural deterministic effects (such as the ramp-like

material contour) on a macro-scale and randomness at the micro-scale

3

(Fig. 1(c)). The focus of our study is to predict the behavior of a
nonwoven material sample under strain (see Fig. 1(d) for a real-world
measuring procedure). We are interested in the stress–strain curve that
relates the relative strain in % of the original sample height to the
reacting force of the material in Newton. The stress–strain curve is
a highly relevant quality criterion for the produced material and an
indicator for the tensile stress it can bear without tearing.

To predict the nonwovens’ tensile strength from production pa-
rameters of a typical machine we build on the simulation framework
of Harmening et al. (2020). It describes the nonwoven fiber structure
as a parameter-dependent stochastic graph and computes its tensile
strength behavior by solving a large-scale ordinary differential equation
(ODE) on the graph. Fig. 2 illustrates the steps necessary to virtually
map production parameters to the resulting material’s tensile strength,
our proposed changes are highlighted in ⊛. First in line is the genera-
tion of a virtual fiber structure 1⃝ with respect to a given production
parameter combination. Fibers are drawn according to a stochastic
laydown model and represented as piecewise linear Jordan curves in
3D space. The simulated curves are confined to a three-dimensional
cuboid of fixed size to approximate a real-life punched material sample.
Fiber endpoints together with virtual bonding points, where two or
more curves meet each other closer than a fixed contact threshold,
form a graph representation 2⃝. The graph is reduced by removing
all but the connected components joining the lower with the upper
face of the cuboid. A tensile strength simulation based on an ordinary
differential system on the graph 3⃝ accurately predicts the stress–strain
curve 4⃝. Due to the random nature of the material, the fiber structure
is represented by a stochastic graph. Thus, Monte-Carlo simulations are
required to realize many graphs with the respective stress–strain curves
and to predict the expected tensile stress behavior and its deviation for
a given parameter combination. The graphs are embedded in a compact
sample cuboid.

Note that the model chain underlying the simulation framework
deals with 28 input parameters. After non-dimensionalization and un-
der certain constraints on a process class, the number of practically
relevant parameters can be reduced to four. Two of them influence
the fiber deposit behavior in the stochastic laydown model, a third
controls the amount of fibers used for the structure generation, and
the remaining fourth parameter affects the sensitivity of the utilized
bonding (graph topology). For details on model chain, parameters
and the 4-parametric process class under consideration we refer to
Appendix B.

In view of process design and material optimization the prescribed
procedure by Harmening et al. (2020) suffers from its high computa-
tional cost. Whereas the virtual fiber structure generation is fast (few
seconds per graph) and can be easily scaled up to a large number of
samples, the ODE-solver is expensive. In fact, for one individual sample
(one representative) a computation currently takes several hours up to
multiple days. Thus, we aim for a machine learning model ⊛ to replace
the ODE-solver by an efficient and interpretable approach.

4. Our surrogate model

We propose to learn a model on a given training dataset with
varying parameter combinations to predict tensile strength behavior for
unseen parameter combinations. We assume that the set of production
parameters are known and adjustable, but the resulting effect on the
tensile strength is unknown. In particular, as any given (graph) sample
is just a representation of a stochastic process, we are interested not
only in predictions for individual samples, but in the distribution of
stress–strain curves for a given set of production parameters.

Our surrogate model approach uses the fiber graph generator and
consists of two main parts. First, we approximate the observed stress–
strain curve computed by the ODE-solver with a constant-quadratic
function, which depends only on two parameters. Second, we employ

a combination of nonlinear feature extraction based on the fiber graph
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Fig. 3. Characteristic tensile strength behavior. Left: Example stress–strain curves obtained for a fixed parameter setting by ODE-approach. Right: Corresponding derivatives
determined using central differences.
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topology together with a simple, interpretable linear regression model
to predict these two parameters. This allows the reconstruction of
the tensile strength for a given sample. To this end, we learn the
correspondence of parameters of the constant-quadratic function to
topological features of the fiber graph.

4.1. Constant-quadratic approximation of stress–strain curves

We observe that the stress–strain curves obtained from the ODE-
simulation for all parameter combinations follow a similar pattern: The
curve is described by a constant part with near zero stress up to a
threshold of applied strain, at which the curve establishes a quadrati-
cally increasing behavior. That the increase indeed exhibits a quadratic
behavior becomes clear by examining the curve’s derivative, which
shows a piecewise linear behavior (cf. Fig. 3). The behavior is the result
of more and more fibers coming under strain and thus contributing
to the tensile behavior, neglecting plastic effects and fiber tearing.
Moreover, the behavior allows to explain the observed stress–strain
curves by means of a threshold of applied strain 𝛼, which indicates
he beginning of the stress increase, and a coefficient 𝛽, which controls
he quadratic behavior. This motivates the following constant-quadratic
arametrization to approximately describe the relation between strain
nd stress for a given sample

𝛼,𝛽 (𝜖) =

{

0, 𝜖 < 𝛼
𝛽(𝜖 − 𝛼)2, 𝜖 ≥ 𝛼.

(1)

ere, 𝜖 refers to the relative strain applied to the sample and 𝑇𝛼,𝛽
escribes the resulting reacting force, where 𝛼, 𝛽 ∈ R≥0 parametrize the
urve. The replacement of the curve itself by an adequate estimation
sing only two parameters, enables a straight-forward machine learning
odeling approach with the parameters 𝛼, 𝛽 as our labels. To support

he use of the constant-quadratic parametrization in this context, we
rovide the coefficient of determination (𝑅2 = 0.99) for the fitted curves
n our dataset in Section 5.3.

.2. Fiber graph feature extraction

Just as the physical structure of the real nonwoven material regu-
ates the mechanical force which is needed to stretch the sample, the
eometric arrangement of nodes (bonding points) and the topological
tructure of the fiber graph guides the ODE-simulation which results
n the stress–strain curve. Hence, we select topological as well as
eometric graph features, that presumably carry information about how
asily the virtual fiber structure can be stretched, as features for our
urrogate machine learning model. On the one hand, this includes basic
nformation about the density and local structure of the graph, such
s the number of nodes, edges and maximum degree. On the other
and, we include features that act as proxies for the ability to stretch,

uch as shortest paths connecting and minimum cuts separating the a

4

top and bottom layer of the graph. Lastly, we observe that each edge
represents the connection between two bonding points along a fiber in
the graph and its true length might differ from the Euclidean distance
of its endpoints in physical space. Therefore, we calculate the difference
between those values and aggregate them for the whole graph.

To define the features that we extract from such graphs, we clarify
the informal introduction of the fiber graphs from above as follows: A
graph 𝐺 = (𝑉 ,𝐸) consists of a set of nodes 𝑉 and a set of edges 𝐸, each
onnecting exactly two nodes. In this work, we consider graphs that
re embedded in R3, i.e., there exists a function 𝑝 ∶ 𝑉 → R3 mapping
odes to positions in space. For short, we will write 𝑑(𝑣,𝑤) and 𝑑(𝑒) if
= {𝑣,𝑤} is an edge to denote the Euclidean distance between 𝑝(𝑣) and
(𝑤). Furthermore, each edge 𝑒 has a length 𝑙(𝑒). Graphs are assumed to
e undirected and loop-free, i.e., edges are subsets of 𝑉 with cardinality
xactly two, but 𝐸 can be a multiset. The set of neighbors of 𝑣 ∈ 𝑉 is
(𝑣) = {𝑤 ∈ 𝑉 ∣ {𝑣,𝑤} ∈ 𝐸}. Let 𝛿(𝑣) be the number of edges incident

o 𝑣 (note that 𝛿(𝑣) ≥ |

|

 (𝑣)|
|

in general). For a set of nodes 𝑆 ⊆ 𝑉 , we
efine  (𝑆) =

⋃

𝑣∈𝑆  (𝑣) ⧵𝑆. Finally, 𝑃𝑢𝑣 denotes a path in 𝐺 from 𝑢
o 𝑣 and len𝑃𝑢𝑣 is the number of edges in 𝑃𝑢𝑣. We divide the nodes of
he graph into three classes, nodes close to the lower and upper faces
nd nodes inside of the sample cuboid. The nodes near the lower and
pper faces are of particular interest to us, to whose classes we refer to
s 𝑉𝑙 and 𝑉𝑢.

.2.1. Graph features
In the ‘‘graph’’ feature set, we include the number of nodes 𝑛 = |𝑉 |,

umber of edges 𝑚 = |𝐸|, maximum node degree 𝑑max = max𝑣∈𝑉 𝛿(𝑣),
s well as the number of upper face nodes |

|

𝑉𝑢|| and lower face nodes
𝑉𝑙||.

We assume that the interplay between positions of bonding points
nodes) and length of fibers (edges) connecting them, influences the
inal stress–strain curve of the simulated nonwoven. Hence, we encode
his information in several features. In particular, we consider the
verall sum of fiber lengths 𝐿fiber =

∑

𝑒∈𝐸 𝑙(𝑒), as well as 𝐿1(𝑃1) =
en𝑃1, the length of a shortest path (in terms of edge count) 𝑃1 =
rgmin

{

len(𝑃𝑢𝑣) ∣ 𝑢 ∈ 𝑉𝑙 , 𝑣 ∈ 𝑉𝑢
}

, connecting the lower face 𝑉𝑙 with the
pper face 𝑉𝑢. Furthermore, we compute the sum of fiber lengths 𝐿2(𝑃2)
long a shortest weighted path 𝑃2 between 𝑉𝑙 and 𝑉𝑢 min𝑃𝑢𝑣

{

∑

𝑒∈𝑃𝑢𝑣 𝑙(𝑒)
}

ith 𝑢 ∈ 𝑉𝑙 , 𝑣 ∈ 𝑉𝑢 and the Euclidean length 𝐿3(𝑃2) of this weighted
hortest path 𝑃2. Finally, we consider the {mean, median, sum} of the
ifferences between the Euclidean and fiber length distances over all
dges {𝑙(𝑒) − 𝑑(𝑒) ∣ 𝑒 ∈ 𝐸} and the size of a minimum cut 𝐶min, i.e., an
dge set with minimum cardinality that disconnects 𝑉𝑙 from 𝑉𝑢 when
emoved. For an illustration of these features see Fig. 4. Table 1 gives

n overview of all ‘‘graph’’ features.
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Fig. 4. Illustration of some graph features. The fiber graph on the left has 𝑛 = 10
odes, 𝑚 = 17 edges. The sets 𝑉𝑢 and 𝑉𝑙 are colored in blue, and red, respectively.
or the path 𝑃 , we depict edge lengths 𝑙(𝑒), Euclidean distances between endpoints

𝑑(𝑒), as well as the three different path length variants 𝐿1 , 𝐿2 , 𝐿3. A minimum cut 𝐶𝑚𝑖𝑛
separates all nodes above value 1.5 from all nodes below that value, |

|

𝐶𝑚𝑖𝑛
|

|

= 4.

Table 1
Input features used in the proposed regression model.

Set Symbols Description

Param – Four production parameters characterizing
the process class (cf. Appendix B)

𝑛 Number of nodes
𝑚 Number of edges
𝑑max Maximum node degree
𝐿fiber Sum of fiber lengths ∑

𝑒∈𝐸 𝑙(𝑒)
|

|

𝑉𝑢
|

|

Number of upper face nodes

Graph
|

|

𝑉𝑙
|

|

Number of lower face nodes
𝐿1(𝑃1) Length of shortest path 𝑃1 between 𝑉𝑙 and 𝑉𝑢
𝐿2(𝑃2) Fiber lengths sum on weighted shortest path 𝑃2
𝐿3(𝑃2) Euclidean length on weighted shortest path 𝑃2
𝐷1 , 𝐷2 , 𝐷3 {mean,median, sum} of differences between

Euclidean distance and fiber length
|

|

𝐶min
|

|

Size of minimum edge cut separating 𝑉𝑙 and 𝑉𝑢

Stretch 𝑆𝑐
1 , 𝑆

𝑐
2 , 𝑆

𝑐
3 , 𝑆

𝑐
4 , 𝑆

𝑐
5 {mean, std, median, max, sum} of stretching

distance for 𝑐 ∈ {1, 1.05, 1.1… , 1.5}

4.2.2. Stretching features
To complement the standard graph features, we propose a new

one that is specifically tailored towards simulating the stretching of
nonwovens. Recall that the process resulting in the stress–strain curves
fixes the fibers at the bottom and top of a sample to two plates and
pulls the two plates apart (cf. Fig. 1(d)). We ask how far this process
(theoretically) can go without overstretching any fibers, i.e., how ‘‘far
up’’ we can shift the bonding points without violating any individual
length constraints while fixing the bonding points at the bottom in their
positions.

In the initial state given by the graph generator, the Euclidean
distance between two bonding points that are connected by a fiber
should be at most the length of the fiber. We hence call a graph 𝐺

ith node positions 𝑝 and edge lengths 𝑙 a valid instance if

({𝑣,𝑤}) ≥ ‖𝑝(𝑣) − 𝑝(𝑤)‖2 = 𝑑 (𝑣,𝑤) ∀ {𝑣,𝑤} ∈ 𝐸 . (2)

We can reformulate our question as the maximization of the sum
f height coordinates of the nodes in 𝑉𝑢 while fixing the positions of
he nodes in 𝑉𝑙 and keeping the instance valid. To solve this problem
fficiently, we make an additional simplifying assumption. We come
p with a fast and simple algorithm to compute a lower bound on the
aximum above. It allows the nodes of the fiber graph outside of 𝑉𝑙

o move freely on the vertical (third) dimension, while fixing the coor-
inates in the horizontal plane (first and second dimension). Formally,
e compute a solution to the following optimization problem, where
(𝑣)𝑖 denotes the spatial coordinate to 𝑣, 𝑖 = 1, 2, 3:

Stretch

iven: a valid instance (𝐺, 𝑝, 𝑙) and 𝑉𝑙 ⊆ 𝑉

aximize: ∑𝑣∈𝑉 ⧵𝑉𝑙 𝑝
′(𝑣)3 subject to

′
• 𝑝 (𝑣) = 𝑝(𝑣) ∀𝑣 ∈ 𝑉𝑙 A

5

• 𝑝′(𝑣)1 = 𝑝(𝑣)1 and 𝑝′(𝑣)2 = 𝑝(𝑣)2 ∀𝑣 ∈ 𝑉
• (𝐺, 𝑝′, 𝑙) is a valid instance

We note that this optimization problem ignores many properties of
eal-world nonwoven materials, such as the fact that fibers might be
ntertwined or cannot move freely around due to other reasons. How-
ver, it allows us to prove the following theorem. The corresponding
lgorithm (Algorithm 1) and proof of its correctness and runtime can
e found in Appendix A.

Theorem 1. Given a valid instance (𝐺, 𝑝, 𝑙) and a set 𝑉𝑙 ⊆ 𝑉 , the
Stretch problem can be solved in 𝑂 (|𝐸| log(|𝑉 |)) time.

Given a valid instance (𝐺, 𝑝, 𝑙), we use Algorithm 1 to compute the
aximum stretch without violating any edge constraints. As a simple

xtension, we compute the maximum stretch if we allow each fiber to
e stretched to a multiple 𝑐 of its length. That is, we can investigate how
he graph behaves if we consider edge weights 𝑙′(𝑒) = 𝑐 𝑙(𝑒) for some
> 1. This is motivated by the physical (over-)stretching of fibers

uring tensile strength testing. Doing this for increasing values of 𝑐
nd a fixed graph results in nonlinear behavior of the average vertical
ositions of the nodes in 𝑉𝑢 that we can use as additional features for
ur learning algorithm.

We use the mean, standard deviation, median, maximum and sum
f the differences between original node positions and final positions
f nodes in 𝑉𝑢 after stretching along the vertical axis as features in
ur regression model. To add the possibility of ’over-stretching’ we
alculate these stretch features for multiple different length factors,
amely 𝑐 ∈ {1, 1.05, 1.1… , 1.5} and use them as input to our model.
e subsume these features in the ‘‘stretch’’ feature set, see Table 1 for

ll considered ‘‘stretch’’ features.

.3. Summary of approach

Our proposed approach is illustrated in Fig. 5. Given a training
et of production parameter combinations for the process class, we
enerate a set of fiber graph samples for each combination. With the
DE-solver we calculate stress–strain curves as our ground truth and

nput to our regression. We fit the constant-quadratic ansatz 𝑇𝛼,𝛽 (1)
o each curve and extract the optimal values for 𝛼, 𝛽. For each graph,
e calculate the graph and stretch features (cf. Table 1) as described

n Section 4.2. Then, we fit linear regression models to express the
elationship between the feature set and our targets 𝛼, 𝛽.

We use the resulting model as a surrogate for the ODE-solver (cf.
3 and ⊛ in Fig. 2). During inference, we predict a stress–strain curve
iven a fiber graph sample by calculating the graph and stretch features
nd determining 𝛼, 𝛽 by means of our fitted model. We repeat this for
ultiple generated graph samples to account for the randomness of the
onwovens. We compute mean and standard deviation for the obtained
et of curves.

. Experiments

With the methodology described, this section specifies the eval-
ation of our approach. First, we report on the underlying dataset.
ollowing, we characterize our experimental setting, report on our
esults, and close with a discussion on feature importance.

.1. Dataset

We evaluate our approach on a dataset obtained from the fiber
tructure generator for the 4-parametric process class. The process
lass is motivated from the industrial setting in Gramsch et al. (2016)
nd covers practically relevant airlay scenarios. The used production
arameter combinations (‘‘param’’) are chosen randomly from a regime
fixed bounded domain) that result in reasonable fiber structures, cf.,

ppendices B and C. The computation of the associated stress–strain
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Table 2
Composition of our dataset.

Set 1 Set 2 Total

Graphs 6 × 25 37 × 25 1075
Stress–strain curves 6 × 25 37 × 1 187

curves requires solving large-scale dynamical systems tailored to the
individual fiber structure samples. To account for the stiffness of the
dynamical systems we employ an implicit Euler scheme with variable
step size control. For solving the emerging nonlinear equation systems
we use an exact Newton method employing analytical Jacobians and
Armijo’s line search. To warm start Newton’s method we use a predictor
determined over an explicit Euler scheme as initial guess.

While the graph generation and accompanying feature generation
are fast, computing the stress–strain curves with the ODE-solver is very
slow. For 43 parameter combinations, we generate 25 sample graphs
each, totaling 1075 graphs. On average each graph contains 51.507
nodes (standard deviation ±2.182) and 198.744 edges (±29.996). We
elect six of our parameter combinations at random and compute the 25
tress–strain curves corresponding to the graphs using the ODE-solver
Set 1), while for all other combinations we compute only a single
tress–strain curve for one of the corresponding samples (Set 2, cf.
able 2). This is due to the high computational costs of the ODE-solver.
n fact, this solver typically requires between 24 and 28 h for a single
nstance, yielding multiple CPU weeks for our training dataset. Included
n the dataset are hence only 187 supervised samples (6 × 25 samples +
7 × 1 sample) across 43 different parameter combinations. The graphs
nd the corresponding stress–strain curves act as ground truth examples
or supervised learning. Given an unseen parameter combination, our
oal is to predict the average behavior as well as a range of deviation
f the resulting stress–strain curves as close as possible to the ground
ruth.

.2. Experimental setup

We perform leave-one-out cross-validation across the parameter
ombinations. In each run, we separate the data into a training set
ontaining the supervised samples of 42 parameter combinations and
test set containing the sample(s) of the remaining (single) parameter

ombination. To obtain training labels, we fit the constant-quadratic
unction 𝑇𝛼,𝛽 (1) onto the stress–strain curves inside the training set

nd use the best found parameters 𝛼, 𝛽 as labels to train our model. 3

6

uring inference, the fitted model uses the features shown in Table 1
s input and predicts the parameters 𝛼, 𝛽, which are used to reconstruct
he predicted stress–strain curve. For each parameter combination, we
hen compare predicted to ground truth curves.

Using parameter combinations with multiple supervised training
amples (Set 1), we compare mean and standard deviation of the pre-
icted and the ground truth curves respectively. For the single-sample
upervised parameter combinations (Set 2) we take all 25 (mainly
nlabeled) graph samples of that parameter combination and check
ow much the ground truth curve of the single labeled sample deviates
rom the mean of the predicted curves that our model produces. See
ig. 6 for examples of both cases.

To achieve a fair comparison, we first calculate the coefficient of
etermination 𝑅2 and adjusted 𝑅2 between the means of curves. We
hoose these measures as they provide a relative error between predic-
ion and ground truth independent of the strain value. For example,
iven a single parameter combination from (test) Set 1 we predict a
urve for each of the 25 graph samples with our model. We calculate
he mean curve based on this set and compare it to the ground truth,
.e., the mean of all original curves. Given the variability of samples
ithin the same parameter combination, this validation provides a

obust estimation of model quality. While 𝑅2 is a default evaluation
core for regression tasks, we complement it with the adjusted 𝑅2

score, which penalizes for larger numbers of selected attributes within
a model via the formula

𝑅2 = 1 − (1 − 𝑅2) 𝑛 − 1
𝑛 − 𝑝 − 1

where 𝑛 is the number of data points and 𝑝 is the number of features
used by the model. That way, simpler and therefore more interpretable
models are preferred.

Second, we perform an Optimal Transport (OT) optimization be-
tween the sets of curves embedded in R𝑑 , where 𝑑 = 1000 is the number
f base points at which the curve is sampled. In comparison to the me-
ian 𝑅2 score, the OT score penalizes substantial differences between
ndividual predicted and actual curves to a larger degree. With this
dditional score we can adequately assess the difference in distribution
etween prediction and ground truth curves. All experiments were done
n a machine with 48 CPU cores (4x Intel(R) Xeon(R) Silver 4116 CPU

2.10 GHz) and 376 GB RAM running Debian 6.3.0 using Python
.6.10.
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Fig. 6. Example results of predicted mean and standard deviation vs. ground truth. Left: a single ground truth curve vs. our predicted results. Right: mean and standard deviation
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Table 3
Regression results on the synthetic dataset for baseline and our proposed approach.
We take the ODE-solver results as ground truth for comparison and report Optimal
Transport loss as well as median 𝑅2 and adjusted 𝑅2.

Feature set Median 𝑅2 ↑ Adj. 𝑅2 ↑ OTLoss ↓

Baseline 0.39 – –

Param 0.83 0.83 287.59
Stretch 0.97 0.96 111.77
Graph 0.97 0.97 99.65
Param + graph 0.97 0.97 82.62
Param + stretch 0.97 0.96 85.24
Param + graph + stretch 0.98 0.97 85.71

Graph + stretch 0.98 0.97 71.44

constant-quadratic approx. 0.99985 – –

5.3. Results and discussion

Comparing our surrogate model to the ODE-simulation approach
(cf., Fig. 2), we achieve a significant speedup. The time needed to
compute a stress–strain curve for a sample generated by an unseen
parameter combination is reduced by more than three orders of mag-
nitude from 24–48 h per sample (ODE-simulation) to two minutes
per sample (our approach). As both workflows can be executed in a
parallelized fashion, we achieve a speedup of more than 1000×. This
includes the generation of features and inference to test data.

We report the results for the 43-fold cross-validation over the pa-
rameter combinations in our dataset. Table 3 shows median coefficient
of determination (𝑅2 and adjusted 𝑅2) and OT loss for predicting stress–
strain curves for a given parameter test set not part of training. As
a baseline, we compute the mean of the fitted parameters 𝛼, 𝛽 for all
raining examples and compare the reconstructed curve to the ground
ruth. We find that our model accurately predicts stress–strain curves
or unseen parameter combinations and outperforms the baseline by a
lear margin. Comparing different feature sets, the union of ‘‘graph’’
nd ‘‘stretch’’ features achieves the best performance with a median
oefficient of determination of 𝑅2 = 0.98 and an OT loss of 71.44,
alculated between mean predicted curves and the constant-quadratic
pproximation. This holds even compared to the case, where we add
he production parameters ‘‘param’’ to the feature set. To our surprise,
he ‘‘stretch’’ features calculated by Algorithm 1 already achieve good
erformance on their own, reaching 𝑅2 = 0.97. This indicates that the
opological and geometric structure of the fiber graph already encodes
uch of the behavior under vertical stretching. For comparison, we

dditionally evaluate a model trained solely on the (four) production
arameters and find significantly worse performance. We explored the
ddition of lasso and ridge regularization to our regression model and
ound no significant change in results.

We investigate our approach by calculating feature importance for

he trained linear regression model using the union of ‘‘graph’’ and
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‘‘stretch’’ feature sets. Values are shown in Fig. 7. The larger the
absolute value of the feature coefficient, the higher the impact on model
predictions. We observe that high impact features differ between 𝛼 and
𝛽 prediction. Features from the ‘‘stretch’’ feature set display a large
impact, particularly 𝑆1 (mean) and 𝑆5 (sum) and for larger values of
length factor 𝑐. This indicates that the values calculated by Algorithm

already contain most of the information needed to predict tensile
trength, while the ‘‘graph’’ features are only used for fine-tuning the
esult. As expected, as the number of edges 𝑚 in the graph increases,
he quadratic behavior in the stress–strain curve begins earlier (𝛼 is
maller) and the quadratic incline grows quicker (𝛽 is bigger). This is

due to the fact that more fibers need to be stretched. The Euclidean
length along a weighted shortest path 𝐿3(𝑃2) shows the opposite behav-
ior. At a high value, the fibers along the shortest path have some room
to be pulled apart in the tensile strength test without being stretched to
their limit or beyond, and thus without contributing to the nonwoven’s
strength. Consequently, the feature value is positively related to 𝛼 and
negatively related to 𝛽. Overall, the coefficients are stable over different
parameter combinations, indicating a robust model fitting. As seen in
Table 3 our constant-quadratic function is a well-chosen approximation
for the ground truth stress–strain curves.

It is remarkable that we achieve these powerful results with such a
simple linear regression model. Presumably, this results from the inte-
gration of prior knowledge about the underlying physics via the fitting
approximation and the calculated ‘‘graph’’ and ‘‘stretch’’ features.

6. Conclusion and future work

This work demonstrates the advantages of machine learning for ten-
sile strength determination of nonwovens given as a network of bonded
fibers in a stochastic graph structure. Our proposed regression model
uses features extracted from the graph representation and generated
by a novel graph stretching algorithm. We integrate prior knowledge
of material behavior by fitting a constant-square approximation to
the stress–strain curve. Compared to the sophisticated ODE-solution
approach from literature, our model achieves speedups up to 1000-
fold, while reliably obtaining stress–strain curves of comparable quality
(𝑅2 = 0.98) for unknown combinations of production parameters. The
dataset used for the 4-parametric production process class includes a
variety of airlay scenarios. The simple, interpretable model allows ex-
perts to investigate the significance of the features. The speed increase
achieved makes computer-aided process design and material optimiza-
tion feasible, as it favors the use of simulation optimization methods
required to cope with the stochastic nature of the presented simu-
lation framework. The work can be considered as a feasibility study
(proof of concept). In view of the modular nature of the underlying
simulation framework, individual components (e.g., lay-down model
or tensile strength model) can be easily replaced and the machine
learning regression adapted accordingly. Even for more complex mod-

els, e.g., including effects such as bending and twisting of individual
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Fig. 7. Feature importance values for the linear regression models to predict 𝛼 (top) and 𝛽 (bottom). Left: Feature set ‘‘graph’’, right: ‘‘stretch’’. To reduce visual clutter, we display
the five stretch features with biggest resp. smallest mean values.
fibers, this promises efficient predictions in a reasonable time frame.
Equally important, the machine learning approach could also be used
to predict other nonwoven properties such as insulation, flow resistance
or acoustic properties, as well as material properties resulting from
different production processes.

The data and code to train and evaluate our surrogate models is
available at https://github.com/pwelke/random-nonwoven-fibers.
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Appendix A. ZStretch problem and stretching algorithm

In this appendix we provide details on the computation of the
stretch features for the fiber graphs. Recall that we call a connected
graph 𝐺 = (𝑉 ,𝐸) with node positions 𝑝 ∶ 𝑉 → R3 and edge lengths
𝑙 ∶ 𝐸 → R≥0 a valid instance if

𝑙({𝑣,𝑤}) ≥ ‖𝑝(𝑣) − 𝑝(𝑤)‖2 = 𝑑 (𝑣,𝑤) ∀ {𝑣,𝑤} ∈ 𝐸,

where 𝑑(⋅, ⋅) denotes the Euclidean distance.

A.1. Problem formulation

Given a valid instance (𝐺, 𝑝, 𝑙) with classes 𝑐, we call 𝑉𝑙 and 𝑉𝑢 the
set of all nodes in the bottom and the top class, respectively. Ideally, to
maximize the height of nodes in 𝑉𝑢, we would like to solve the following
problem:

FreeStretch

Given: a valid instance (𝐺, 𝑝, 𝑙) and 𝑉𝑙 ⊆ 𝑉

Maximize: ∑𝑣∈𝑉 ⧵𝑉𝑙 𝑝
′(𝑣)3 s.t.

• 𝑝′(𝑣) = 𝑝(𝑣) ∀𝑣 ∈ 𝑉𝑙
• (𝐺, 𝑝′, 𝑙) is a valid instance

A solution to this problem would hence tell us, how far we can
stretch a given virtual sample of a nonwoven without tearing any
individual fibers if fibers cannot intertwine but move freely through
each other. However, there are several technical problems with this
formulation and we simplify it further to come up with a fast and simple
algorithm to compute a lower bound on the maximum above.

ZStretch

Given: a valid instance (𝐺, 𝑝, 𝑙) and 𝑉𝑙 ⊆ 𝑉

Maximize: ∑𝑣∈𝑉 ⧵𝑉𝑙 𝑝
′(𝑣)3 s.t.

• 𝑝′(𝑣) = 𝑝(𝑣) ∀𝑣 ∈ 𝑉𝑙
• 𝑝′(𝑣)1 = 𝑝(𝑣)1 and 𝑝′(𝑣)2 = 𝑝(𝑣)2 ∀𝑣 ∈ 𝑉
• (𝐺, 𝑝′, 𝑙) is a valid instance

As we have added the additional constraint that nodes may only
move along the vertical axis, it immediately follows that the solution

https://github.com/pwelke/random-nonwoven-fibers
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Algorithm 1 Graph Stretching Algorithm.

Input: a valid instance (𝐺, 𝑝, 𝑙) and 𝑉𝑙 ≠ ∅

Output: a valid instance (𝐺, 𝑝′, 𝑙) that maximizes the ZStretch objective

1: set 𝑝′(𝑣) = 𝑝(𝑣) for all 𝑣 ∈ 𝑉
2: set 𝑉⊥ = 𝑉𝑙 and 𝐵 = 

(

𝑉⊥
)

3: for 𝑣 = argmin𝑤∈𝐵 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑤, 𝑉⊥) do
4: pop 𝑣 from 𝐵
5: 𝑝′(𝑣)3 = 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑤, 𝑉⊥) + 𝑝(𝑣)3
6: add 𝑣 to 𝑉⊥
7: 𝐵 = 𝐵 ∪ (𝑣) ⧵ 𝑉⊥

Algorithm 2 maxMove Subroutine.

Input: a vertex 𝑣 ∈ 𝑉 and 𝑉⊥ ⊆ 𝑉 .

Output: the largest ℎ s.t. 𝑝′(𝑣) = 𝑝(𝑣)+(0, 0, ℎ)𝑇 satisfies 𝑑(𝑝′(𝑣), 𝑝(𝑤)) ≤
𝑙({𝑣,𝑤}) for all 𝑤 ∈  (𝑣) ∩ 𝑉⊥

1: for all {𝑣,𝑤} ∈ 𝐸 do
2: find the largest ℎ s.t.
3: 𝑝′(𝑣) = 𝑝(𝑣) + (0, 0, ℎ)𝑇 satisfies
4: 𝑑(𝑝′(𝑣), 𝑝(𝑤)) ≤ 𝑙(𝑣,𝑤) for all 𝑤 ∈  (𝑣) ∩ 𝑉⊥

to the ZStretch problem is lower-bounding the FreeStretch problem.
However, there is a fast algorithm that solves the ZStretch problem,
which we will describe below.

A.2. Stretching algorithm

Algorithm 1 is very similar to Dijkstra’s algorithm for weighted
shortest paths. It iteratively ‘‘fixes’’ nodes in their maximal valid verti-
cal coordinates and maintains an ever growing set of fixed nodes 𝑉⊥.
t starts by initially fixing the nodes in 𝑉𝑙 and maintains a border 𝐵 of
odes that are not yet fixed but connected to at least one fixed vertex.
n each iteration, it selects a vertex 𝑣 from 𝐵 that can be moved by the
east amount in the vertical coordinate (i.e., 𝑝(𝑣)3), while keeping the
ther coordinates fixed and while respecting the distance constraints
iven by edges from 𝑉⊥ to 𝑣. Following this strategy allows us to prove
hat the algorithm maximizes the vertical values of all nodes under the
iven constraints in near linear runtime. This in turn implies that the
lgorithm maximizes the sum over all vertical values.

heorem 1. Given a valid instance (𝐺, 𝑝, 𝑙) and a set 𝑉𝑙 ⊆ 𝑉 , Algorithm
solves the ZStretch problem in 𝑂 (|𝐸| log(|𝑉 |)) time.

We prove that Algorithm 1 is correct (Lemma 2) and runs in
loglinear time (Lemma 3). The proof of Theorem 1 immediately follows
from these two lemmas. To simplify the notation and appeal to intuition
we will (without loss of generality) call a position shift in the vertical
(third) dimension a move ‘‘up’’ or ‘‘down’’.

Lemma 2. Given a valid instance (𝐺, 𝑝, 𝑙) and a set 𝑉𝑙 ⊆ 𝑉 , Algorithm 1
maximizes 𝑝′(𝑣)3 for all 𝑣 ∈ 𝑉 ⧵ 𝑉𝑙 s.t.

1. 𝑝′(𝑣) = 𝑝(𝑣) ∀𝑣 ∈ 𝑉𝑙
2. 𝑝′(𝑣)1 = 𝑝(𝑣)1 and 𝑝′(𝑣)2 = 𝑝(𝑣)2 ∀𝑣 ∈ 𝑉
3. (𝐺, 𝑝′, 𝑙) is a valid instance

Proof. We prove Lemma 2 by induction on the nodes in 𝑉⊥, showing
that the algorithm always maintains a valid maximized instance 𝐺[𝑉 ],
⊥
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i.e., the graph induced1 by 𝑉⊥ with updated 𝑝′ is a solution to the
ZStretch problem for (𝐺[𝑉⊥], 𝑝, 𝑙). Furthermore, we show that there
lways exists a valid instance (𝐺, 𝑝′′, 𝑙) with 𝑝′′|𝑉⊥ = 𝑝′|𝑉⊥ , where 𝑓 |𝑋 is

the restriction of function 𝑓 to the domain 𝑋. To this end, we note that
at any time of the algorithm the sets 𝑉⊥ and 𝐵 are disjoint (cf. Lines
2 and 7). Furthermore, we never remove nodes from 𝑉⊥. Finally, we
change the z-coordinates of nodes only once, before adding them to 𝑉⊥
(Line 5).

Initially, 𝑉⊥ contains the nodes that must not be moved according
to the objective of ZStretch (cf. Line 2). Hence, their coordinates will
never be altered, as these nodes cannot be selected in Line 3 and the
algorithm correctly maintains Condition 1. of Lemma 2. As we did not
alter (𝐺, 𝑝, 𝑙) we can assume that all conditions of Lemma 2 hold.

Now suppose we select some 𝑣 = argmin𝑤∈𝐵 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑤, 𝑉⊥). By
definition, 𝑚𝑎𝑥𝑀𝑜𝑣𝑒 respects the constraints 𝑙({𝑣,𝑤}) of all edges {𝑣,𝑤}
that connect 𝑣 to some 𝑤 ∈ 𝑉⊥, that is, for  (𝑣) ∩ 𝑉⊥ ⊆  (𝑣).
By induction, we know that all 𝑤 ∈ 𝑉⊥ have maximal height. By
definition, ℎ + 𝑝(𝑣)3 hence maximizes the height of 𝑣 without making
(𝐺[𝑉⊥∪{𝑣}], 𝑝′, 𝑙) invalid. Hence, (𝐺[𝑉⊥∪{𝑣}], 𝑝′, 𝑙) fulfills all conditions
of Lemma 2.

We will show that there exists a valid instance in which 𝑣 is moved
by ℎ = 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑤, 𝑉⊥). More precisely, there exists a valid instance
(𝐺, 𝑝′′, 𝑙) with 𝑝′′|𝑉⊥∪{𝑣} = 𝑝′|𝑉⊥∪{𝑣}. We will show that

𝑝′′(𝑤′) =

{

𝑝′(𝑤′) if 𝑤′ ∈ 𝑉⊥ ∪ {𝑣}
𝑝(𝑤′) + (0, 0, ℎ)𝑇 if 𝑤′ ∈ 𝑉 ⧵ (𝑉⊥ ∪ {𝑣})

results in a valid instance.
We have already seen that the constraints to any 𝑤 ∈ 𝑉⊥ are

respected. Let now 𝑤′ ∈ 𝑊 ∶= 𝑉 ⧵ (𝑉⊥ ∪ {𝑣}). Recall that ℎ =
min𝑤∈𝐵 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑤, 𝑉⊥). Hence, we can move all nodes 𝑤′ in 𝐵 up by
ℎ without violating their constraints to nodes in 𝑉⊥.

Now, for any 𝑤′ ∈ 𝑊 ⧵ 𝐵, we have that 𝑤′ has no edge to any
vertex in 𝑉⊥, hence, we can also move them up by ℎ without violating
any constraints to nodes in 𝑉⊥. Furthermore, as (𝐺, 𝑝, 𝑙) was a valid
instance, we have that 𝑙({𝑤′, 𝑤′′}) ≥ 𝑑(𝑝(𝑤′), 𝑝(𝑤′′)) = 𝑑(𝑝′′(𝑤′), 𝑝′′(𝑤′′))
for all 𝑤′, 𝑤′′ ∈ 𝑊 . This results from the fact that we have fixed all but
he vertical coordinates of nodes; shifting two nodes up by the same
mount ℎ does not change their relative distances to each other. Hence,
here exists a valid instance (𝐺, 𝑝′′, 𝑙) where 𝑝′′(𝑣) = 𝑝(𝑣) + (0, 0, ℎ)𝑇 .

As 𝐺 is connected, we will reach every vertex 𝑣 ∈ 𝑉 at some
oint of the algorithm. The algorithm terminates if 𝐵 is empty and has
aximized the height of all nodes at that point. □

The second to last step of the above proof shows that we do not
ake our instance invalid by moving some 𝑣 up at some point in the

lgorithm. Careless selection of the next vertex, however, might result
n new positions 𝑝′ that would ‘‘overstretch’’ certain edge constraints.

We now show that the algorithm can be implemented to run in near
inear time. Note, however, that the pseudo-code given in the listing
f Algorithm 1 shows the high level idea and needs to be modified to
chieve the runtime claimed in the lemma below.

emma 3. Algorithm 1 can be implemented to run in 𝑂 (|𝐸| log(|𝑉 |)) time
or a valid instance (𝐺, 𝑝, 𝑙).

roof. Line 1 can be implemented in 𝑂 (|𝑉 |). To efficiently obtain the
ertex from our border 𝐵 which minimizes 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑣, 𝑉⊥), we use a
eap for 𝐵 that sorts by a key that is set to 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑣, 𝑉⊥). Hence,
inding 𝑣 minimizing 𝑚𝑎𝑥𝑀𝑜𝑣𝑒 and popping it from the heap in Line 4
hen requires 𝑂 (log(|𝑉 |)) time if the maximum number of elements in

is bounded by |𝑉 | or |𝐸|.
We note that for any 𝑣 ∈ 𝐵, 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑣, 𝑉⊥) is always determined

y an individual edge 𝑒 = {𝑣,𝑤} for some 𝑤 ∈ 𝑉⊥. This follows from

1 The induced subgraph 𝐺[𝑋] of 𝐺 is defined as 𝐺[𝑋] ∶=
𝑋, {𝑣,𝑤} ∈ 𝐸 ∣ 𝑣,𝑤 ∈ 𝑋 for some 𝑋 ⊆ 𝑉 .
( { })
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the definition of 𝑚𝑎𝑥𝑀𝑜𝑣𝑒 as the largest ℎ such that individual edge
constraints are satisfied, and the fact that we only shift ‘‘up’’, while
fixing the other dimensions. Hence, we can always find 𝑚𝑎𝑥𝑀𝑜𝑣𝑒(𝑣, 𝑉⊥)
for any 𝑣 ∈ 𝐵 by selecting the edge 𝑒 that allows for the smallest shift
of 𝑣, among all edges connecting 𝑤 ∈ 𝑉⊥ to 𝑣 ∈ 𝐵. Thus, we can use a
queue over edges connecting 𝑉⊥ to 𝐵, ordered by the maximum move each
edge allows. Line 2 can hence be implemented in 𝑂 (|𝐸| log(|𝑉 |)). Node
∈ 𝐵 minimizing 𝑚𝑎𝑥𝑀𝑜𝑣𝑒 in Line 3 can now be found by popping an

dge with the smallest key (i.e., smallest 𝑚𝑎𝑥𝑀𝑜𝑣𝑒 value) repeatedly
rom the queue, until an edge is found that ends in some 𝑣 that is not
et in 𝑉⊥. Updating the height (Line 5) of 𝑣 is then a constant time
peration, as the required ℎ is the key of the queue. Updating 𝐵 in
ine 7 can now be done in 𝑂

(

|

|

 (𝑣)|
|

log |𝑉 |

)

, as we need to add or
pdate the edges incident to 𝑣 that connect to neighbors not yet in 𝑉⊥.

As each vertex 𝑣 is processed exactly once (cf. Line 6 and recall that
is assumed to be connected), we add each edge once to the queue and
ay update it once. Algorithm 1 hence runs in
(

|𝑉 | + |𝐸| log(|𝑉 |) +
∑

𝑣∈𝑉

(

log(|𝑉 |) + |

|

 (𝑣)|
|

log(|
|

 (𝑣)|
|

)
)

)

hich is 𝑂 (|𝐸| log(|𝑉 |)), by noting that ∑𝑣∈𝑉
|

|

 (𝑣)|
|

= 2 |𝐸|. □

Appendix B. Simulation framework and process class

This appendix provides details to the model chain underlying the
simulation framework (Fig. 2) and the 4-parametric process class under
consideration.

B.1. Model chain

A nonwoven material is the image of fibers deposited onto a moving
conveyor belt. Consider a cubic reference material volume 𝑅 over the
nonwoven height 𝐻 with base area 𝑤2

𝑅 and let 𝑇𝑅 be the time needed
to produce it. A deposited fiber of length 𝐿 is identified with the lay-
down time 𝑇 and the planar coordinates (𝑋, 𝑌 ) of one of its end points.
It contributes to 𝑅, if 𝑋−𝑥𝑏(𝑇 ) ∈ [−𝑤𝑅∕2, 𝑤𝑅∕2] is satisfied, where 𝑥𝑏
accounts for the motion of the conveyor belt. In the three-dimensional
web a fiber is modeled in terms of the curve 𝜂(𝑋,𝑌 ,𝑇 ) ∶ [0, 𝐿] → 𝑅,

d𝜂𝑠 = 𝑅(𝜂𝑠 ⋅ 𝑒𝑥 + 𝑥𝑏(𝑇 )) ⋅ 𝜏𝑠 d𝑠, 𝜂0 = (𝑋 − 𝑥𝑏(𝑇 ))𝑒𝑥 + 𝑌 𝑒𝑦 + 𝑟(𝑋)𝑒𝑧,

𝑅(𝑥) = 1
√

1 + 𝑟′(𝑥)2
[𝐼 + (

√

1 + 𝑟′(𝑥)2 − 1)𝑒𝑦 ⊗ 𝑒𝑦

+ 𝑟′(𝑥)(𝑒𝑧 ⊗ 𝑒𝑥 − 𝑒𝑥 ⊗ 𝑒𝑧)],

𝑟(𝑥) = 𝐻 ∫

𝑥

−∞
𝑔(𝑥̄) d𝑥̄

with 𝑋 𝑔-distributed, 𝑌 ∼  ([−𝑤𝑅∕2, 𝑤𝑅∕2]) and 𝑇 ∼  ([0, 𝑇𝑅]) uni-
formly distributed — based on the stochastic Stratonovich differential
system

d𝜉𝑠 = 𝜏𝑠 d𝑠, d𝜏𝑠 = − 1
𝐵 + 1

[𝛱𝑠(𝐵) ⋅ ∇𝛴(𝜉𝑠) d𝑠 + 𝐴𝛱𝑠(
√

𝐵)◦d𝑤𝑠]

ith unit tensor 𝐼 , projection 𝛱𝑠(𝑥) = 𝑛1,𝑠 ⊗ 𝑛1,𝑠 + 𝑥 𝑛2,𝑠 ⊗ 𝑛2,𝑠 as well
as 𝜉0 = 0 and 𝜏0 uniformly distributed in the unit circle spanned by
𝑒𝑥 and 𝑒𝑦. The stochastic lay-down model for position and orientation
((𝜉, 𝜏) ∶ [0, 𝐿] → R3 ×S2) with unit sphere S2 ⊂ R3 describes the path of
a deposited fiber onto the 𝑒𝑥 − 𝑒𝑦 plane. In the modeling for the fiber
tangent 𝜏, the drift term prescribes the typical coiling behavior with
the potential 𝛴, while the white noise term with the Wiener process
(𝑤 ∶ [0, 𝐿] → R3) and the amplitude 𝐴 accounts for fluctuations in the
lay-down process. Anisotropic behavior is indicated by the parameter
𝐵 ∈ [0, 1] with the local orthonormal triad {𝜏, 𝑛1, 𝑛2}, 𝑛1 ∈ span{𝑒𝑥, 𝑒𝑦}.
The typical nestling behavior of the fiber on the ramp-like contour
surface of the nonwoven is modeled by the curve 𝜂. The contour line
𝑟 of the fiber material in machine direction is described by means of
the joint probability density function 𝑔 of the deposited material. A
10
fiber end point lies on the associated contour surface and the fiber
orientation is aligned to it due to the local rotation 𝑅(𝑥) ∈ 𝑆𝑂(3).

We restrict our considerations to the embedded test material volume
 ⊂ 𝑅 with smaller base 𝑤2, 𝑤 = 𝑤𝑅−2𝐿, to exclude lateral boundary
effects. The random fiber web is consolidated by adhesive joints as a
result of thermobonding. Let 𝜂h denote the discretized fiber, i.e., set
of discrete fiber points. An adhesive joint 𝑎 to be formed between two
fibers 𝜂h and 𝜂̃h is modeled as

𝑎 = 1
2
(𝑞⋆ + 𝑞⋆)

if ‖𝑞⋆ − 𝑞⋆‖2 < 𝜅, (𝑞⋆, 𝑞⋆) = argmin
(𝑞,𝑞)∈𝜂h×𝜂̃h

‖𝑞 − 𝑞‖2

with contact threshold 𝜅 > 0. The adhesive joint takes the place of
the fiber points in contact in the respective fibers. As the minimizer
might be not unique, we use the first minimizer found for practical
reasons. Since the fibers lie rather straight, we assume at most one
contact between each fiber pair. If more fibers are involved in a contact,
the resulting adhesive joint is centered between the respective fiber
points in contact. The resulting adhered fiber structure is considered as
a connected graph 𝐺 = (𝑉 ,𝐸) with the nodes 𝑉 representing adhesive
joints as well as fiber ends and the edges 𝐸 indicating fiber connections
between them. The graph is supplemented by the node positions 𝑝0 ∶
𝑉 → R3 and the edge-associated fiber lengths 𝑙 ∶ 𝐸 → R≥0.

The tensile strength test is modeled as differential system on the
node positions 𝑝 ∶ 𝑉 × [0, 1] → R3, initialized with 𝑝(⋅, 0) = 𝑝0,

𝑝(𝑣, 𝑡) = 𝑝0(𝑣), ∀𝑣 ∈ 𝑉𝑙 , 𝑝(𝑣, 𝑡) = 𝑝0(𝑣) + 𝑡 ℎ𝑒3, ∀𝑣 ∈ 𝑉𝑢
𝜀 𝜕𝑡𝑝(𝑣, 𝑡) =

∑

𝑒∈𝛿(𝑣)
𝑓 𝑣
𝑒 (𝑡), ∀𝑣 ∈ 𝑉 ⧵ (𝑉𝑙 ∪ 𝑉𝑢)

𝑓 𝑣
𝑒={𝑣,𝑣′} =

𝑝(𝑣′) − 𝑝(𝑣)
𝑑(𝑒)

𝑁
(

𝑑(𝑒) − 𝑙(𝑒)
𝑙(𝑒)

)

ith 𝛿(𝑣) ⊂ 𝐸 incident edges of node 𝑣. For fixed lower face 𝑉𝑙, the
pper face 𝑉𝑢 of the fiber structure is linearly shifted away in (vertical)
3-direction (with maximal displacement ℎ > 0). In the interior nodes
f the graph the acting traction forces are balanced by a friction term
ith 𝜀 > 0. The force amplitude 𝑁 depends on the relative strain of the

iber connection 𝑒 with respect to its length 𝑙(𝑒), where 𝑑(𝑒) denotes the
uclidian distance. It reflects Hooke’s law in the stretched state and is
aken as zero in the unstretched state. The characterizing stress–strain
elation for the fiber structure (with initial height 𝐻) is then given by
𝜖(𝑡), 𝑇 (𝑝(⋅, 𝑡))), 𝑡 ∈ [0, 1],

(𝑡) = ℎ
𝐻

𝑡, 𝑇 (𝑝(⋅, 𝑡)) = −
∑

𝑣∈𝑉𝑢

∑

𝑒∈𝛿(𝑣)
𝑓 𝑣
𝑒 (𝑡) ⋅ 𝑒3.

.2. Parameters and process class

An airlaid nonwoven typically consists of two fiber types. Each is
haracterized by length 𝐿𝑓 , line density (𝜌𝐴)𝑓 , cross-sectional weighted
lasticity modulus (𝐸𝐴)𝑓 and lay-down probability density 𝑔𝑓 con-
idered as normally distributed 𝑔𝑓 ∼  (𝜇𝑓 , 𝜎2𝑓 ), 𝑓 = 1, 2. The joint
robability density is then 𝑔 = 𝛽𝑛𝑔1 + (1 − 𝛽𝑛)𝑔2 with fiber number
raction 𝛽𝑛 determined by mass fraction 𝛽. For technical reasons we
se a compact support 𝑠𝑢𝑝𝑝(𝑔) = [𝑥𝑙 , 𝑥𝑟]. The production plant is
haracterized by conveyor belt width 𝑏 and speed 𝑣𝐵 as well as mass
ate 𝑚̇, the nonwoven sample is specified by height 𝐻 and width 𝑤.
roduction time 𝑇𝑅, trace curve 𝑥𝐵 and number of deposited fibers per
ype 𝑛𝑓 , 𝑓 = 1, 2 are resulting quantities. The laydown is parametrized
egarding diffusion 𝐴, anisotropy 𝐵 and bending potential 𝛴 expressed
y the three standard deviations 𝜎𝑥, 𝜎𝑦, 𝜎𝑧 in 𝑒𝑥, 𝑒𝑦, 𝑒𝑧-directions. The
onding considers fiber discretization length ▵ 𝑠 and contact threshold
. The strength test is parametrized by adhesive thickness 𝑧 for upper
nd lower structure faces, friction-associated regularization 𝜀 as well as
raction function 𝑁 with a regularization parameter 𝛿. In total, there
re 28 input parameters for the model chain, whereas the displacement



D. Antweiler, M. Harmening, N. Marheineke et al. Machine Learning with Applications 8 (2022) 100288

r
a

o
s
𝜖

𝑇

w

𝛼

s

d
m
w
p
f
s

R

A

Table B.4
Characteristic dimensionless input parameters for model chain. Values for industrial
airlay process, plant K12 with a mixture of solid (PES) and bi-component (PES/PET)
fibers (cf. scenario in Gramsch et al., 2016 and measurement data in Appendix C).
Referential values in SI units: 𝑤 = 1.0 ⋅ 10−2 m, 𝑣𝐵 = 3.3 ⋅ 10−2 m∕s, (𝐸𝐴)1 = 1.0 N.

Description Symbol Value

Fiber length 𝐿1∕𝑤, 𝐿2∕𝐿1 5.5, 1.0
Fiber number 𝛼1𝑤2∕𝑣𝐵 , 𝛼2∕𝛼1 1150, 0.65
Elasticity modulus (𝐸𝐴)2∕(𝐸𝐴)1 1.0
Lay-down pdf mean 𝜇1∕𝑤, 𝜇2∕𝑤 0, 0
Lay-down pdf std 𝜎1∕𝑤, 𝜎2∕𝜎1 2.0, 1.0
Support joint lay-down pdf 𝑥𝑙∕𝜎1, 𝑥𝑟∕𝜎1 −5.0, 5.0
Nonwoven sample height 𝐻∕𝑤 6.0
Bending potential (std) 𝜎𝑦∕𝑤, 𝜎𝑥∕𝜎𝑦, 𝜎𝑧∕𝜎𝑦 2.0, 0.75, 0.075
Diffusion 𝐴

√

𝜎𝑦 2.8 ⋅ 10−2

Anisotropy 𝐵 3.0 ⋅ 10−1

Fiber discretization ▵ 𝑠∕𝑤 3.7 ⋅ 10−2

Contact threshold 𝜅∕𝑤 2.6 ⋅ 10−2 (calibrated)
Adhesive thickness at faces 𝑧∕𝑤 6.0 ⋅ 10−2

Friction regularization 𝜀 1 ⋅ 10−7

Traction regularization 𝛿 1 ⋅ 10−4

Table B.5
4-parametric process class for machine learning approach in Section 5. Parameter ranges
for dataset used in ML approach and corresponding values in industrial scenario (cf.
Table B.4). The values of all other input parameters (ratios) are taken from Table B.4.

Symbol Range Industrial Value Effect

𝛼̂ = 𝛼1𝑤2∕𝑣𝐵 [1000, 1515] 1150 Amount of fibers
𝜎̂ = 𝜎1∕𝑤 [1.0, 5.0] 2.0 Laydown behavior
𝜎̂𝑦 = 𝜎𝑦∕𝑤 [1.0, 5.0] 2.0 Laydown behavior
𝜅̂ = 𝜅∕𝑤 [2.8, 3.0] ⋅ 10−2 2.6 ⋅ 10−2 Bonding

ℎ in the strength test belongs to the output quantities, i.e., stress–strain
relationship.

Since the parameters (𝜌𝐴)1 (𝜌𝐴)2, 𝛽, 𝑚̇ and 𝑏 only occur in the
quantities 𝛼1 = 𝛽𝑚̇∕((𝜌𝐴)1𝐿1𝑏)) and 𝛼2 = (1 − 𝛽)𝑚̇∕((𝜌𝐴)2𝐿2𝑏) indi-
cating the number of fibers for each type deposited per second and
meter in cross direction on the conveyor belt, three parameters can be
eliminated. Making the model problem dimensionless with nonwoven
sample width 𝑤, conveyor belt speed 𝑣𝐵 and elasticity modulus (𝐸𝐴)1
reduces the set of input parameters by further three. The resulting
dimensionless numbers are mainly formulated as ratios, see Table B.4.
Note that the equation for the strength test was already considered
in dimensionless form in order to incorporate the friction-associated
(dimensionless) regularization parameter 𝜀 ≪ 1 that ensures a unique
solution. In this paper we focus on a 4-parametric process class. The
process class is motivated from the industrial test setting in Gramsch
et al. (2016) (airlay scenario with a mixture of solid (PES) and bi-
component (PES/PET) fibers in plant K12), see values of dimensionless
parameters (ratios) in Table B.4. For the process class we adopt the
(industrial) values — except for 𝛼̂, 𝜎̂, 𝜎̂𝑦 and 𝜅̂, see Table B.5. These four
parameters affect the fiber amount in the nonwoven (sample), the fiber
laydown behavior as well as the bonding (i.e., fiber graph topology). By
varying them in a certain regime, a broad variety of practically relevant
airlay scenarios are covered. See Table B.5 for the parameter ranges
underlying the dataset for our experiments in Section 5. Note that the
larger chosen 𝜅̂ ensures a stronger bonding and hence a denser fiber
structure than in the industrial test case.

Appendix C. Data by model and measurements

In the experimental real-world tensile strength test, the measured
stress–strain curves for nonwoven material samples of fixed size from
the same production setting show a large volatility, in particular for
increasing strains 𝜖 > 0.2. This observation is illustrated by three
measured curves that correspond to the reliability zone within the mea-
surement accuracy for the industrial test setting described in Gramsch
et al. (2016) with sample base width 𝑤 = 1.0 ⋅ 10−1 m and applied
𝑀

11
Fig. C.8. Stress–strain relations for industrial test setting in Gramsch et al. (2016) with
sample base width 𝑤𝑀 = 1.0 ⋅ 10−1 m and pre-force 𝑇 ⋆ = 1.0 N. Measurements (dashed
black lines) vs. our model (solid red line), cf. Table B.4.

pre-force 𝑇 ⋆ = 1.0 N, see Fig. C.8. Note that the fiber structure in this
eal-world experiment is loose (less bonded) to allow microstructure
nalysis.

Our model class of constant-quadratic approximations 𝑇𝛼,𝛽 (1) fits
bviously very well. For comparability of our model with the mea-
urements we have to account for pre-force (with associated pre-strain
⋆) and sample base width ratio. The respective (dimensionless) model

stress–strain curve with respect to the pre-force 𝑇 ⋆ is given by

̂ (𝜖) =
(𝑤𝑀

𝑤

)2 1
𝑇 ⋆ 𝑇𝛼,𝛽 (𝜖)

|

|

|

|𝜖=𝜖⋆(𝜖+1)+𝜖
= (𝑀𝛼,𝛽 𝜖 + 1)2 (C.1)

with 𝑀𝛼,𝛽 =
𝑤𝑀
𝑤

√

𝛽
𝑇 ⋆ (𝛼 + 1) + 1

here 𝜖⋆ = 𝛼 +
√

𝑇 ⋆∕𝛽. The quadratic curve is parametrized by the
single term 𝑀𝛼,𝛽 > 0 that depends on the parameters 𝛼, 𝛽 of our model
class (1).

The stress–strain relations (C.1) obtained from the simulation frame-
work match the measured ones. However, note that the simulation
results are affected by model parameters that are neither given nor can
be identified in advance but must be calibrated, such as the topological
contact threshold. While the calibration with the ODE-approach is
tedious and computationally expensive, it turns out to be very easy to
perform with the ML regression. For the industrial setting at hand with
the model parameters of Table B.4, we find 𝜅̂ = 2.6 ⋅ 10−2, implying
= 0.401, 𝛽 = 0.297 𝑁 and 𝑀𝛼,𝛽 = 8.632 in mean (see Fig. C.8). Note

that this value lies outside of the training dataset used in Section 5 (cf.
Table B.5). The larger 𝜅̂ chosen for the training involves a denser fiber
tructure of higher realistic tensile strength.

To cope reliably with the nonwovens’ random nature and depen-
ence on production parameters, the execution of large (real-world)
easurement series is much too expensive and time-consuming. Hence,
e use the ODE-simulations as ground truth to train and investigate the
erformance of our machine learning approach. The dataset considered
or the 4-parametric (production) process class reflects possible airlay
cenarios within the industrial setting of Gramsch et al. (2016).
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