Maximally Expressive GNNs
for Outerplanar Graphs

Franka Bause* 12, Fabian Jogl* 4, Patrick Indri®, Tamara Drucks?,
David Penz®?, Nils M. Kriege!'®, Thomas Gértner3,
Pascal Welke”3, Maximilian Thiessen?

! Faculty of Computer Science, University of Vienna, Vienna, Austria
2 UniVie Doctoral School Computer Science, University of Vienna, Vienna, Austria
3 Machine Learning Research Unit, TU Wien, Vienna, Austria
4 Center for Artificial Intelligence and Machine Learning, Vienna, Austria
5 Multimedia Mining and Search, Johannes Kepler University Linz, Linz, Austria
5 Research Network Data Science, University of Vienna, Vienna, Austria
" Lancaster University Leipzig, Leipzig, Germany
{firstname.lastname }@{univie, tuwien}.ac.at

Abstract. We propose a linear time graph transformation that enables
the Weisfeiler-Leman algorithm and message passing graph neural net-
works to be maximally expressive on outerplanar graphs. Our approach
is motivated by the fact that most pharmaceutical molecules correspond
to outerplanar graphs. Existing research predominantly enhances the
expressivity of graph neural networks without specific graph classes in
mind, which often leads to methods that are impractical due to their com-
putational complexity. In contrast, the restriction to outerplanar graphs
enables to encode the Hamiltonian cycle of each biconnected component
in linear time. We prove that our method achieves maximum expressiv-
ity on outerplanar graphs. Experiments confirm that our graph trans-
formation improves the predictive performance of MPNNs on molecular
benchmark datasets at negligible computational overhead.

Keywords: Graph Neural Networks - Molecular Property Prediction -
Expressivity.

1 Introduction

We study graph neural networks (GNNs) for the class of outerplanar graphs and
devise a linear time pre-processing step that enables message passing graph neu-
ral networks (MPNNs) to distinguish all non-isomorphic outerplanar graphs. It
was shown that MPNNs have limited expressivity, i.e., there exist non-isomorphic
graphs that each MPNN must map to identical embeddings [3]. This led to the
development of GNNs that are more expressive than MPNNs, often called higher-
order GNNs, which usually come with a significant increase in computational
complexity. However, for certain domains of interest, the graph structure can
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Fig. 1. CAT" transforms a biconnected outerplanar graph by copying it and directing
the edges of its (unique) Hamiltonian cycle once in each direction. All other edges are
present in both directions and are annotated with the distance of their endpoints on
the Hamiltonian cycle. This encodes the HAL sequence (which can be used to uniquely
identify the graph) in the unfolding tree of each node.

be exploited to build efficient higher-order GNNs. In this work, we focus on the
pharmaceutical domain and on graphs that represent molecules. Over 92% to
97% of the graphs in widely used benchmark datasets in this domain are outer-
planar. We focus on this class of graphs and devise a linear time transformation
that allows MPNNs to become maximally expressive on outerplanar graphs.
This implies that, in principle, our architecture can solve any learning task on
outerplanar graphs. Our experiments show that our proposed transformation
improves the predictive performance of several GNN architectures on multiple
benchmark learning tasks with little increase in runtime.

2 CAT* and CAT

We build on the results of Colbourn and Booth [2] to first transform biconnected
outerplanar graphs to make them distinguishable by the Weisfeiler-Leman algo-
rithm. We call this first step cyclic adjacency transformation (CAT*). Formal
definitions and proofs can be found in the full paper [1]. CAT* transforms bi-
connected outerplanar graphs by augmenting two copies of the graph, directing
the edges of the unique Hamiltonian cycle, and annotating them with the dis-
tance of their corresponding nodes. This way, so-called Hamiltonian adjacency
list (HAL) sequences are encoded in the Weisfeiler-Leman unfolding trees. For
two biconnected outerplanar graphs, these sequences are the same or cyclic shifts
of each other, if and only if the graphs are isomorphic [2]. Figure 1 shows an
overview of CAT* and how the HAL sequences are encoded in the unfolding trees
of transformed graphs. We extend this to CAT by transforming all biconnected
outerplanar components of outerplanar graphs and adding additional vertices
that help determine the orientation of these components in the original graph,
as shown in Figure 2. Our transformation CAT enables the Weisfeiler-Leman
algorithm to distinguish all non-isomorphic outerplanar graphs.
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Fig. 2. CAT takes a graph, applies CAT* to its biconnected outerplanar components,
and adds further nodes to encode their position and orientation within the graph. Let-
ters represent original node ids and colors represent edge and node labels from CAT.
Cycle nodes represent nodes added by CAT™, pooling nodes connect two corresponding
cycle nodes, and block nodes connect the pooling nodes for each biconnected compo-
nent, thereby able to store information about its HAL sequence. A global node connects
these nodes to reduce the diameter of the graph. Connect nodes connect pooling nodes
to the rest of the graph, determining the orientation of the biconnected component.

3 Experimental Evaluation

We investigate whether our proposed graph transformation CAT can improve
the predictive performance of MPNNs on molecular benchmark datasets.'t We
utilize three commonly used MPNNs on ten datasets with and without CAT.
Our full paper [1] presents these experiments in detail. Table 1 shows the pre-
dictive performance. Note that our baseline models obtain strong results, often
surpassing the performance of (higher-order) GNNs reported in the literature,
and that we train each MPNN and MPNN-CAT with exactly the same sets
of hyperparameters. Overall, CAT improves the predictive performance of GIN
and GCN in the majority of datasets (6/10 and 8/10, respectively). For GIN
and GCN, performance increases reliably on all datasets, except MOLLIPO and
MOLTOX21. Surprisingly, CAT does not work well with GAT and only improves its
performance in 2/10 datasets. Most notably on ZINC, CAT achieves very strong
results boosting the predictive performance of MPNNs between 33% for GCN
and even 46% for GAT.

4 Conclusion

We propose a graph transformation that enables the Weisfeiler-Leman algorithm
to be maximally expressive on outerplanar graphs. We rely on the fact that bi-

" Our code can be found at https://github.com/ocatias/outerplanarGNN.,



4 Bause et al.

Table 1. Predictive performance of MPNNs with and without CAT. Arrows indicate
whether smaller (]) or bigger (1) results are better. Bold entries are an MPNN with
CAT that outperforms the same MPNN without CAT.

Dataset — ZINC ZINC250k MOLHIV MOLBACE MOLBBBP

J Model MAE | MAE | ROC-AUC 1+ ROC-AUC 1+ ROC-AUC 1
GIN 0.168 £ 0.007 0.033+0.003 77.9+1.0 T74.6+£3.2 66.0 £ 2.1
CAT+GIN 0.101 +0.004 0.034 +0.003 76.7+1.8 79.5+25 672118
GCN 0.184 £0.013 0.067 £0.005 76.7+14 779£1.7 66.1 +2.4
CAT+GCN 0.123 +£0.008 0.034+£0.00377.1+16 79.2+15 683+1.7
GAT 0.375+0.013 0.103+£0.004 76.6+2.0 81.7£23 66.2+1.4
CAT+GAT 0.201 +£0.022 0.046 £0.004 75.3+1.6 79.3+1.6 66.0 £ 1.9
Dataset — MOLSIDER MOLESOL MOLTOXCAST MOLLIPO MOLTOX21

J Model ROC-AUC 1t RMSE | ROC-AUC 1 RMSE | ROC-AUC 1
GIN 56.6 £1.0 1.105+0.077 65.3+£0.6 0.717£0.016 75.8 £ 0.7
CAT+GIN 58.2+0.9 0.985 £0.055 65.6 0.5 0.798 £0.031 74.8£1.0
GCN 56.7 £ 1.5 1.053 £0.087 64.4+£04 0.748+0.018 76.4 £0.3
CAT+GCN 57.9+1.8 1.006 £0.036 66.2+0.8 0.771 £0.023 74.9 £0.8
GAT 58.4+1.0 1.037+£0.063 63.8+£0.8 0.728 £0.024 76.3 £ 0.6

CAT+GAT 58.3+1.3 1.09+0.048 64.5+0.8 0.754£0.021 75.4+£0.7

connected outerplanar graphs can be uniquely identified by their Hamiltonian
adjacency list sequences, which CAT encodes in unfolding trees. Our work high-
lights the value of GNNs designed for specific graph classes. In general, achieving
high expressivity is computationally expensive. We have demonstrated that for
outerplanar graphs maximal expressivity can be achieved in linear time.
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