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Abstract. The complexity of combinatorial optimization problems typi-
cally leads to a steep performance decrease of solving approaches with
increasing problem size. We explore the usage of machine learning (ML)
to substantially reduce the search space size of large problem instances
by predicting and removing unpromising parts in order to accelerate the
subsequent solving process. More specifically, we explore graph sparsening
techniques for the electric autonomous dial-a-ride problem (E-ADARP),
where self-driving electric vehicles are used to provide an efficient and sus-
tainable ride-sharing service by serving customer transportation requests
between pickup and drop-off locations within specified time windows.
Approaches utilizing support vector machines as well as gradient boosted
trees are compared to and also combined with a common k-nearest neigh-
bor heuristic. Our goal is to boost the performance of a state-of-the-art
large neighborhood search for the E-ADARP to make it well applicable
to instances with up to 5200 requests and 260 vehicles. Our ML models
are trained on representative instances and close-to-optimal solutions
obtained from excessively long runs in a weakly supervised fashion. We un-
cover challenges, a fundamental limitation, and benefits of this approach
and are able to achieve the intended scalability.

Keywords: Dial-A-Ride Problem - Electric Autonomous Vehicles -
Problem Space Pruning - Graph Reduction - Machine Learning

1 Introduction

Electric autonomous vehicles (EAVs) are a promising answer for current chal-
lenges in transport such as increasing traffic volumes and a growing market for
on-demand transportation. Utilizing a fleet of EAVs to provide a sustainable
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ride-sharing service could keep travel individual and flexible while reducing the
high cost of private car ownership, using available capacities more efficiently than
classical taxi services, and reducing the environmental impact. The correspond-
ing routing problem is called the electric autonomous dial-a-ride problem (E-
ADARP) [7], where the aim is to find minimum cost routes that serve all customer
requests. The E-ADARP is an NP-hard combinatorial optimization problem,
and its complexity makes calculating optimal solutions in general practically
infeasible when considering more than five vehicles and fifty customer requests [7].
Most existing heuristic approaches in the literature focus only on up to twice as
many but to have a considerable impact on urban traffic, scalable approaches are
essential to be able to handle much larger fleets and customer volumes efficiently.

In this work, our goal is to improve the scalability of a sophisticated large
neighborhood search (LNS) for the E-ADARP [8] that is leading on instances
with up to 96 requests to scenarios that are magnitudes larger with up to 5200
orders [21]. To deal with the bottleneck introduced by the huge number of arcs in
the underlying instance graph, we substantially prune the search space by heuris-
tically sparsifying the graph, keeping only promising arcs that are likely to appear
in close-to-optimal solutions. This is a commonly applied strategy to improve the
efficiency of the subsequent optimization, e.g., simple k-nearest neighbor (k-NN)
sparsification [I2] is a standard strategy on the traveling salesman problem (TSP).
Lately, tackling such pruning decisions by machine learning (ML) techniques has
gained increasing attention in the literature [14} 28] [30]. In contrast to the TSP
and structurally simpler vehicle routing problems (VRPs) considered in existing
works, the highly constrained E-ADARP constitutes a much more challenging
and advanced problem formulation where it is not straightforward to define under
which conditions an arc should be considered promising. We follow and extend
the lines of previous research and explore sparsification approaches of individually
applying as well as combining k-NN and ML techniques in the context of the
E-ADARP. The main idea is to train an ML model in a weakly supervised offline
fashion on high-quality solutions for many representative instances and to use
the model to decide which arcs to keep or discard. We encounter challenges
and questions related, for example, to suitable features and the interplay of
sparsification and the inner workings of an LNS. Training ML models in such a
context works in general reasonably well but when applied within the LNS frame-
work, some simpler models using fewer specific features perform notably better,
despite their clearly worse prediction performance. Thus, a more fundamental
limitation of the general approach exists. Further analysis of these circumstances
reveals interesting insights and explanations. Ultimately, we are able to boost
the performance of the employed LNS with a simpler learned model and beat the
LNS by Limmer [2I] that was leading for such large benchmark instances so far.

The remainder is organized as follows. The next section introduces the E-
ADARP formally. Section [3| reviews related work. Section [] presents the proposed
approaches for search space pruning, including design motivations, used features,
and ML models. Experimental results are shown and discussed in Section
Finally, Section [§] concludes the paper and outlines promising future work.
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2 Electric Autonomous Dial-a-Ride Problem

Following Bongiovanni et al. [7], the E-ADARP is defined on a weighted directed
graph G = (V, A), with vertex set V representing all relevant locations and
arc set A = {(i,7) : i,7 € V,i # j} the direct connections in between. Each
arc (i,j) € A is associated with a corresponding travel time ¢; ; and an energy
(battery) consumption f; ;. We are given a fleet of ny homogeneous vehicles,
denoted by H = {1,...,ng}, which has to provide service for n customer requests.
The pickup locations of these requests are P = {1,...,n} C V and the drop-off
locations D = {n +1,...,2n}, respectively, and each request i = 1,...,n has a
time window [w5't wsnd] for the service start time as well as a maximum ride
time w; > t; ;4. Additional vertex sets O C V and F' C V represent the vehicles’
origin and destination depots, respectively, and S C V represents available
charging stations (CSs). A charging rate a; for each charging station s € S
defines the amount of energy that can be charged per time unit. Moreover, each
location 7 € V has assigned a service duration d; with d; > 0 for pickup and
drop-off locations ¢ € PU D and d; = 0 otherwise. Vehicles h € H have a uniform
maximum battery capacity ) and individual initial battery levels By ;1 at the
start of the planning horizon, and they need to meet a minimum battery level vQ
at the end of the planning horizon with v € [0,1] denoting the minimum end
state-of-charge (SoC). Vehicles have a maximum load capacity C, and we assume
here that each request requires one unit load to be transported, as this is the
case in the common E-ADARP benchmark instances we will consider.

A route of a vehicle is a feasible sequence of locations i € V starting at its
origin depot and ending at its destination depot. An E-ADARP solution consists
of ny vehicle routes together with a service start time ¢*"V for each location %
in the routes. For visited charging stations, the durations of charging have to
be optimized as well. For a solution to be feasible, each request must be served
exactly once; i.e., for each request i = 1,...,n, there is one route that visits
pickup location ¢ before drop-off location i + n. Additionally, the maximum user
ride times and maximum load and battery capacities must never be exceeded,
the time windows not be violated, and the EAVs must not run out of charge at
any time. Charging stations can be visited an unlimited number of times but
only by EAVs with no passenger on board.

The E-ADARP aims to find a feasible solution that minimizes a linear
combination of the total travel time over all routes and the total user excess ride
time over all requests:

. ti Z Z h ss Z s
min wrou mng tz’sz’j + weXCebb tZCiXCeSb7 (1)

heH (i,5)cA ieP

where wrouting and wexeess

are weighting factors for the two components. Binary
decision variables 2

+; indicate whether vehicle h € H visits locations ¢ and j in
direct sequence, for (i,7) € A. The user excess ride time t§*°*** for request 7 is
the difference between the actual ride time and the time ¢; ;1,, it takes to travel
directly from the pickup to the drop-off location of .
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3 Related Work

The E-ADARP was initially introduced by Bongiovanni et al. [7], where a three-
and a two-indexed mixed-integer linear programming (MILP) formulation were
presented. In later works, the same authors designed a scheduling algorithm to
minimize the users’ ride time [5] and tackled a dynamic variant by iteratively
solving static E-ADARP subinstances by employing a two-phase metaheuristic
including a machine learning-based large neighborhood search [6].

Su et al. [24] proposed a deterministic annealing metaheuristic for the E-
ADARP and introduced the notion of battery-restricted fragments for representing
E-ADARP routes, which are used to minimize the user excess ride time. In [23],
the same authors further build upon this concept and propose a path-based
MILP formulation that is solved with Branch-and-Price; a labeling algorithm is
used for column generation.

Limmer [21] proposed a bilevel LNS (BI-LNS) that separates the optimization
of EAV charging and request handling by first scheduling charging stops in the
outer level before dealing with the optimization of requests in the inner level.
This work was also the first to introduce very large-scale problem instances with
thousands of requests on which the scalability of BI-LNS is demonstrated.

Lastly, Bresich et al. [§] presented two advanced variants of an LNS, one of
which employs a novel route evaluation procedure for inserting charging stops on-
the-fly as needed in a close-to-optimal fashion. In this way, the used destroy and
repair operators of the LNS can be kept relatively simple as they do not have to
directly consider charging stops: The destroy operator removes a certain number
of randomly selected requests from the current solution and three variants of repair
operators insert them back into the routes by following different greedy strategies.
This metaheuristic also utilizes the fragment-based route representation from [24],
and for the insertion of charging stops, only positions in between fragments need
to be considered. Available positions and charging stations are iteratively tested
for feasibility and selected according to their potential amount of energy charged
and incurred detour length. This on-the-fly LNS (OTF-LNS) approach currently
is the state-of-the-art for most of the common E-ADARP benchmark instance
sets. Only on the very large instances from Limmer [21], OTF-LNS falls behind
BI-LNS as OTF-LNS actually cannot be meaningfully applied anymore in a direct
fashion due to its much too high runtime requirements. The better scalability of
BI-LNS can be explained by its simplicity and therefore higher time-efficiency. In
the current work, we build upon OTF-LNS and aim at improving its scalability
to the very large instances from [21] by applying search space pruning techniques.

Sparsification of the underlying graph of transportation problems is a common
approach to reduce the search space and improve the scalability of solution
approaches. Exact methods only remove elements that can provably never occur
in feasible solutions. Examples are arc elimination rules [9] [TT] that are commonly
used for diverse VRPs. All above mentioned works for the E-ADARP including
in particular [§] apply variants of these deterministic pruning rules and achieve
significant reductions of instance graphs. Still, the remaining graphs are often
rather dense, and much potential is left for heuristic pruning techniques. A
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well-known heuristic is k-nearest neighbor sparsification [12], which keeps only
the k shortest incident edges for each node and discards the rest. It has been
successfully employed in heuristic solving approaches for routing problems such
as the TSP and basic VRP variants [2] B [I7), 22]. Recent applications extend to
end-to-end deep learning-based solving approaches for the TSP and VRP [I} [I8].
In our work, we consider a variant of the k-NN sparsification as seen in Bertsimas
et al. [4], which takes into account that the underlying graph is directed.

Learning-to-prune, i.e., using ML techniques to reduce the instance size and
hence the search space of heuristics, has been applied to diverse combinatorial
optimization problems. Fitzpatrick et al. [I3] utilized advanced features derived
from the linear programming relaxation, cutting planes, and more on the TSP.
Sparsification rates of over 85% barely impacted solution quality and often even
preserved optimality, although not in a guaranteed way. Sun et al. [25] showed
that such an approach may generalize well to out-of-distribution instances.

Beyond the TSP, Lauri et al. [20] showed similar success for the maximum
clique enumeration problem, removing up to 99% of nodes and demonstrating
manifold speed-ups of subsequent solving approaches with only moderate loss
in solution quality. Lauri and Dutta [19] introduced a multi-stage sparsification
concept by training different classifiers for different stages of the pruning process.
For the maximum weight clique problem, Sun et al. [26] investigated statistical
measures and ML for problem reduction where they use ranking and correlation
scores and features derived from the graph structure for training. ML-based
methodologies for search space pruning and heuristic guidance show success in
both prediction accuracy and run time reduction for various NP-hard problems
such as the minimum vertex cover [28], maximum independent set [28], and
uncapacitated facility location [30] problems.

Fitzpatrick et al. [14] present the only ML-based pruning approach in the
context of VRPs known to the authors. They considered specifically an electric
VRP and trained a linear support vector machine, a random forest classifier, and
a logistic regression model to predict which arcs of the underlying graph are likely
to appear in near-optimal solutions. For training, they applied weak supervision
as a way to deal with more complex routing problems by replacing the need for
optimal solutions with just near-optimal solutions. In our work, we follow this line
of research and extend it to the structurally more challenging E-ADARP. As the
instances we are focusing on are magnitudes larger, a fast feature computation
and prediction are crucial, and we therefore rely on a comparatively small subset
of simple features derived directly from the instance and also investigate different
types of ML models and combinations with k-NN sparsening.

4 Search Space Pruning for the E-ADARP

We aim at pruning E-ADARP instances by sparsification of the underlying
graph G = (V, A), specifically the removal of a substantial portion of arcs that
are assumed to be unlikely to appear in close-to-optimal solutions. We rely
on OTF-LNS [§] as underlying optimization approach for the E-ADARP, and
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our primary motivation is to improve its scalability to very large-scale problem
instances such as those from Limmer [21] with up to 5200 requests and 260 EVs.
The computational bottleneck of OTF-LNS is the way how removed requests
are reinserted into the current, partially destroyed solution: The pickup location
of the request is tried to be inserted at every position of each route, followed
by trying to insert the drop-off location of the request at every feasible position
after the pickup in the same route. Assuming a maximum route length of ng
stops, this in essence boils down to O(ny - ngr) candidate routes to be evaluated
for each request insertion. The route evaluation with the OTF charging station
insertion is, in principle, highly efficient but still requires O(ng) time, implying a
total time for one LNS iteration, i.e., the removal of a small constant number of
requests followed by their re-insertion, of O(ny - n%). By sparsening the graph G
(in addition to the deterministic problem reduction performed by Bresich et al.
[8]) and only further pursuing insertion options where the corresponding arcs for
the insertion are still present, the number of candidate routes that undergo the
OTF charging stop insertion and evaluation may be significantly reduced to the
most promising ones, and therefore the LNS is substantially sped up.

It is important to distinguish between different types of arcs connecting
different vertex types: depot arcs and CS arcs, which are incident to a depot
or charging station respectively, and PD arcs, for which both end points are
either pickup or drop-off locations. According to the structure of E-ADARPsS,
PD arcs constitute the majority of arcs with ©(n?) many, whereas there are only
(mn + |S|n) depot and CS arcs, with m and |S| being comparably small. We
expect these types to have different properties regarding their probabilities to
appear in good solutions. For simplicity, we restrict here the sparsification to the
dominant PD arcs with one exception: The direct PD connections of the requests,
i.e., arcs (4,7 + n) for i € P, are also always preserved to aid the existence of
feasible solutions even in case of strong pruning.

As a baseline, we employ the common k-NN sparsification [12] with the travel
time ?; ; between nodes 7,j € V as nearness criterion. The standard approach
of keeping the k nearest neighbors is typically applied on undirected graphs or
restricted to outgoing arcs on directed graphs. Considering the inner workings of
the LNS, our aim is to maintain a minimum in- and outdegree for each node by
conserving the k best in- as well as outgoing arcs in order to enable sufficient
exploration opportunities during the search. This still results in a reduction
with the number of remaining PD arcs being in O(kn). An obvious weakness
of this approach is that it only exploits travel times and does not care about
other important properties of the complex E-ADARP structure, such as the time
windows of requests. In the following, we therefore consider more sophisticated
ML-based approaches that consider a variety of features derived from the instance
structure and are trained in a weakly supervised manner.

Our fundamental ML-based approach as outlined in Algorithm [I] calculates a
feature vector for every PD arc (i,j) € A that remains after the deterministic
problem reduction and applies a pre-trained model in order to decide whether
to keep the arc or remove it, before applying the OTF-LNS. Translating this
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Algorithm 1: Pseudo-code for ML-based pruning and solving approach.

Input: Instance Z with graph G = (V, A), pre-trained model M, parameter k
', (V, A") «+ deterministic_reduction(Z, (V, A));

AFP  get. PD_arcs(A');

3 features < get_arc_features(ATP);

a4 ATP « prune(Z’, ATP features, M, k);

5 A// «— A/ \ APD U A/PD;

6 OTF-LNS(Z',(V, A"));

N o=

into a binary classification task of distinguishing arcs into a promising and an
unpromising class, referring to whether or not they are likely part of a high quality
solution, seems natural. However, the number of arcs we should keep depends
heavily on the allotted run time of the LNS and also the problem structure and
size. In general, shorter run times will require stronger pruning to enable fast
construction of an initial solution and more iterations, while longer run times
allow for keeping more arcs and slower convergence. We thus consider that a
threshold on the number of arcs to be kept shall be externally provided, and that
the decision making has to be robust over a large range of thresholds. We therefore
alm at approximating the probability of arcs to appear in good solutions, which
is a regression instead of a classification task, and perform logistic regression to
obtain a probabilistic heatmap over the arcs.

For the weakly supervised training, we consider a set of independent training
instances that was created in the same randomized fashion as the E-ADARP
instances from Limmer [2I]. Due to the complexity of the E-ADARP, computing
proven optimal solutions for such large instances is intractable, so instead we use
reasonably good heuristic solutions identified by OTF-LNS [§]; cf. Section [5| As
many close-to-optimal solutions may exist for an E-ADARP instance, not only
a single solution is computed but rather multiple solutions are determined and
all PD arcs appearing in at least one of the solutions are labeled positively, i.e.,
considered in-solution arcs. To account for the fact that the LNS does not operate
on CS arcs directly as they are only introduced by the OTF heuristic during
evaluation, we replace all in-solution arcs incident to a CS by corresponding PD
arcs from the first preceding to the first succeeding pickup or drop-off node of
the CS in the route.

Features. We consider quickly computable yet robust features for the arcs with the
aim to achieve an effective pruning while keeping the introduced time overhead low.
For the E-ADARP, the consideration of travel times ¢; ; between nodes i,j € V
appears natural as they are a central part of the objective function, but it is
unclear which other features would contribute to good predictions. We thus
investigated a variety of features for PD arcs, including but not limited to the
differences of time window start, end, and mid-points, the overlap and span of
time windows, the a-nearness [I7], and the distance from the arc centroid to
the nearest and farthest away depot or charging station. The associated battery
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Fig. 1: Distributions of original features and after logarithmic transformations.

consumption and distance of an arc would be further natural features but in
the considered benchmark instances, they are both proportional to the travel
time, thus already implicitly covered. While multiple features showed potential
during a detailed statistical analysis, we found in preliminary studies that the
most suitable and important ones were the travel time ¢; ; and the difference

wStart g, start +wl¢nd _qend

of time window mid-points Aw;; = — I i—. As they capture
important spatio-temporal information and for simplicity, we only focus on these
fundamental features in the following. For brevity, we write from now on just ¢
and Aw instead of ¢; ; and Aw; j, respectively, when the arc (i, j) is clear from
the context. When analyzing the distributions of these features over all arcs of the
training data as well as only on arcs appearing in solutions, it becomes apparent
that they are highly skewed as illustrated by the histograms in Fig. [I When
performing logistic regression, this can be detrimental to model performance and
result in biased predictions. We thus apply logarithmic transformations to obtain
more balanced distributions and to reduce the impact of outliers, also see Fig.

ML-Model-Based Pruning. As mentioned before, a best suited pruning rate for
E-ADARP instances depends on the problem size and whole LNS configuration,
in particular its allowed run time or number of iterations. We therefore consider
the number of PD arcs to be preserved as an external input and will evaluate
the pruning strategies for different values in our experiments. More specifically,
to make this parameter less dependent on the actual instance size and directly
comparable to parameter k from the k-NN approach, let us call this externally
provided parameter also k, and the 2nk PD arcs with highest heatmap values
obtained from the model are preserved, the rest discarded. Note that the factor
two comes from the fact that our k-NN approach keeps the best k in- as well as
outgoing arcs.

Issue of node degree imbalance. As we will see in Section [5 the in-solution
probability approximation works reasonably well using the two transformed
features, but when corresponding models are applied for pruning within the LNS
framework, the results disappoint compared to the baseline k-NN approach. A
closer inspection revealed that the sparsening based on log(t) and log(|Aw|) led
to a substantial imbalance in the remaining in- and outdegrees of the nodes.
While some nodes still have a high number of incident edges, other nodes may lose
connection even completely, leaving the LNS with too few options to integrate
certain nodes into routes. We address this issue in two ways. On the one hand,
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Fig. 2: Ratios of arcs with respective features to be part of a high quality solution.

we apply the k-NN sparsening but now use the heatmap values of the logistic
regression as nearness criterion; in this way, a minimum in- and outdegree k is
guaranteed while we still primarily rely on the predictions of the ML model. On
the other hand, we introduce additional rank-features: The outgoing-rank ro(t) of
an arc is the rank of the arc in the list of all outgoing arcs of the considered arc’s
source node sorted according to ¢. The rank-features ri(t), ro(Aw), and ri(Aw)
are correspondingly defined for ingoing arcs of the target node or in respect to
Aw as sorting criterion, respectively. Observe that k-NN sparsening does nothing
else but simply keeping arcs with ranks up to k. As these rank-features also have
quite skewed distributions, we again apply logarithmic transformations, yielding
the features log(ro(t)), log(ri(t)), log(ro(Aw)), and log(ri( Aw)).

ML Models. To determine which ML models to employ, we analyze the functions
to be fitted with regards to the potential features. A visualization of ratios of arcs
from the training data to appear in high quality solutions over two-dimensional
feature spaces is shown in Fig. 2] While the illustrated functions are not linear,
they appear not that hard to be approximated well. Considering this nonlinearity
but also the requirement to handle large data sets and provide fast inference on
large instances, we decided to investigate a support vector machine (SVM) [10]
and gradient boosted trees (GBTs) [I5]. As an SVM with a non-linear kernel
could deal with the non-linear relationships of the features but would be too slow
for the many samples we have to consider, we use a fast linear SVM enhanced
with a Nystrom transformer [29]. The latter approximates a radial-basis kernel via
a low-rank matrix. The utilization of these two model types is further encouraged
by their applicability for classification as well as regression, their broad usage, and
often excellent results in many and also similar applications [see, e.g., 14, 16, 25].
We also deliberated using more advanced (graph) neural networks, however,
considering concerns regarding scalability and model bias, we intentionally keep
things relatively simple here and only present the above models.

5 Numerical Experiments and Results

All proposed approaches were implemented in Julia 1.11.5 including the GBT
models via the Julia package EvoTrees, but for the linear SVM model with
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Nystrom transformer, we utilized Python’s scikit-learn library via the PythonCall
interface. The experiments were executed on single cores of 2.4 GHz Intel Xeon
E5-2640 v4 processors with a memory limit of 48 GB. The underlying solving
approach for the E-ADARP is OTF-LNS [§], and we investigate the impact
of the sparsification approaches on its scalability to the very large benchmark
instances from Limmer [2I], comparing the performance of the best resulting
approaches to BI-LNS [21], the so far leading method on these instances. The
five instances contain between 180 and 260 vehicles with the number of requests
ranging from 3600 to 5200, and they follow the naming scheme ang-n, where ny
denotes the number of vehicles and n the number of requests. According to the
literature [7, [8, 211, [24], the objective function’s weighting factors are set to
wrowing — .75 and w®*°* = (.25, the minimum end SoC + is fixed at 0.7, and
an arc’s battery consumption is proportional to the associated travel time. We
used a time limit of 15 minutes per run, and 30 LNS runs were performed for
each instance with each sparsification variant.

The training of the employed ML models is done on 100 independent instances
of the same scale as the benchmark instances. For each size, 20 instances are
randomly generated in the same way as detailed by Limmer [2I]. Labels for train-
ing are derived from high-quality solutions of OTF-LNS by running it 30 times
for six hours on each instance. Regarding the class imbalance arising from the
substantial surplus of negative samples, we investigated random subsampling to
obtain an equal number of positive and negative training samples. In preliminary
studies, we compared models trained on this balanced data to models trained
on the original data and found no substantial advantage. To avoid distortion
of the data, we settled on using the original training data with the restriction
to a randomly selected subset of 5% and 2.5% of the samples for the GBT
and Ny-SVM models respectively to deal with the unmanageable size of the
whole training data. Our 5% training set consisted then of around 94 million
negative and 450,000 positive samples and roughly half as many remain in the
2.5% training set. After preliminary testing to find robust parametrizations, the
configuration of the employed models is as follows: For the linear SVM, the
penalty parameter Cgyn, = 100, Ysym = 1, and 30 landmarks are used in the
Nystrom transformer; all used features undergo standardization. For the GBT
model, we set 7 = 0.1, the number of trees to 100, and a maximum depth of
four, and we also apply monotonic decrease constraints on the travel time-based
rank-features to indicate that an increase in value can be expected to always
result in a decrease in the target value.

Results. As we are interested in the predictive performance of our employed
models over a larger range of values for k and respective ratios of arcs to be pruned,
we focus on the receiver operating characteristic (ROC) and precision-recall (PR)
curves and their associated areas under the curve, AUC and AUPRC, as metrics.
For brevity, we denote different subsets of features to train the models with as
follows: Our main original features are F2 = {log(t), log(|Aw|)}, the rank-features
derived from travel times are RF2 = {log(ro(t)),log(ri(¢))}, F4 = F2URF2 is
their combination, and RF4 = RF2 U {log(ro(Aw)), log(ri(Aw))} are all rank-
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Fig.3: ROC & PR curves of k-NN, GBT and Ny-SVM with various feature sets.

features. For evaluation of the proposed sparsening methods in combination with
OTF-LNS, we compare the results to the best known solutions (BKSs) on the
considered benchmark instances as reported by Limmer [2I]. When it comes to
testing the sparsification within the LNS, we consider k& € {100, 150, 200, 250,
300, 350, 400, 500, 600, 800, 1000} to see the impact of different pruning strengths.

The predictive performance of models GBT and Ny-SVM on the test data
in comparison to the k-NN heuristic is illustrated in Fig. [3] The ROC curves
and AUCs of all approaches across all feature sets indicate their capability of
reasonably differentiating between positive and negative samples, whereas the
worse results in terms of PR curves and AUPRCs reveal the impact of the
unbalanced data. Overall, when the two ML models are performed with the same
feature set, GBT consistently gives better results than Ny-SVM, but differences
are very small. The used feature sets have generally more impact. In particular,
we can clearly observe that the two original features in F2 lead to the best results.
Interestingly, adding the time-based rank features (F4) slightly worsens results.
Most importantly, the k&-NN approach and models relying only on rank-features
(RF2 and RF4) showcase considerably worse performance as indicated by their
lowest AUC and AUPRC values.

We now evaluate the impact of the sparsification methods on the results
of OTF-LNS in terms of the average percentage gap of the resulting objective
values to the BKS over all instances; see Fig. [l The original OTF-LNS without
sparsification and BI-LNS are used as baselines as indicated by the red and black
dashed lines in the plots, respectively. We can see that classical k-NN sparsification
already significantly improves the solution quality. The only exception occurs for
k = 100, where the pruning is too restrictive for OTF-LNS to find any feasible
solutions. Perhaps surprisingly, GBT with F2 is not able to catch up with k-NN
sparsening and the BKS. As already pointed out in Section [4] we explain this
primarily by the aspect that too few incident arcs remain for some nodes, leaving
the heuristic search too few options. In general, GBT and Ny-SVM achieve
similar performances again when used with the same feature sets, as exemplified
for feature set F2 in Fig. [d] Their best objective values are found for k£ = 150
and k = 200 respectively with %-gaps ranging from 0.5 to 1.4. Extending the
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Fig. 4: Avg. %-gaps of objective values over all instances for OTF-LNS combined
with various sparsening approaches considering different k-values. The dashed
lines represent BI-LNS (black) and OTF-LNS (red).

feature set to F4 to also capture rank-information about arcs in relation to other
arcs sharing a common node, improves the results only slightly, but also these
variants are outperformed by the k-NN approach as well as BI-LNS.

Using the k-NN heuristic guided by the heatmap values to control the min-
imum node degree mitigates this issue and makes the approaches competitive
with BI-LNS as shown in Fig. [d] This is especially beneficial for models using set
F4 for which the peak performance is observed at k = 150 with average %-gaps
as low as —1.1%.

As the basic k-NN heuristic still performs slightly better than our most
promising models, we investigate the effect of putting more emphasis on the
rank-features and employ models trained on sets RF2 and RF4. Even though
these models perform worse in terms of predictions, their application during
sparsification allows for larger improvements of the performance of OTF-LNS
than with models of higher predictive power. Overall, RF2-based sparsification
turns out to work best in the context of OTF-LNS with average %-gaps between
—1.9% and —2.5% when using the GBT model with k = 350, thus outperforming
all other investigated approaches as well as BI-LNS. The corresponding results
on the benchmark instances in terms of the minimum and mean objective values
(0bj,i, and obj) as well as the standard deviation o(obj) are given in Table
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We observe that the best per- Table 1: Results on benchmark instances.
forming value for k is notably

higher than for the other ap- BLLNS OTF-LNS with
proaches and sparsification  Instance (Limmer|[2023) GBT-RF2, k = 350

based on this feature set re-

Objmin W)J ‘ Objmin Oib.] O'(Ob‘])
quires in general higher k-

. al180-3600 29177.96 29312.55|28178.26 28448.68 98.90
values in order to enable fea- 500 4000 32013.56 32263.01|31078.78 31291.79 125.04
sible solutions, as illustrated  4220-4400 35259.06 35428.04|34263.48 34472.21 94.03
in Fig. @ This needed de- a240-4800 38270.98 38460.9537292.17 37511.77 111.68
crease in the pruning rate can  a260-5200 41472.11 41745.98|40452.13 40683.16 137.57
be explained by the reduced

approximation capabilities of

RF2-based models as indicated by their according ROC and PR curves, and
when utilizing other feature sets such as F4, significantly more in-solution arcs
can be covered with less preserved arcs. We assume as major reason for this
discrepancy that the models learn the properties of the average solution arcs
but not those of the in general only comparatively few arcs that are likely really
crucial for superior solutions, which might include ones with a low probability. For
example, some arcs with long travel times may be needed to allow for sufficient
charging opportunities. Thus, considering better approximation methods or more
advanced features is unlikely to help as it is an inherent issue and limitation of
the approach of covering as many arcs appearing in close-to-optimal solutions as
possible, given a limited amount of arcs that may be kept in sparsening.

6 Conclusion and Future Work

We investigated methods for a heuristic graph sparsification in the context of
the E-ADARP with the goal of increasing the scalability of OTF-LNS to very
large-scale instances by reducing the search space substantially beforehand. As
it is not obvious what distinguishes promising arcs from less promising ones,
we explored the potential of ML models for this classification. The models are
trained offline on representative instances and arcs appearing in close-to-optimal
solutions are used as labels. We observed that both, a linear SVM with Nystrém
transformer as well as a GBT, are able to learn the average probabilities of
arcs being part of high-quality solutions reasonably well when using travel times
and differences in time window mid-points as features. The best approximation
results as documented by ROC and PR curves are obtained for these features
as well as their extension to rank-based features in respect to the travel times.
Considering a common k-NN heuristic as baseline, we compare the performance
of GBT and SVM models utilizing different subsets of features in the context
of the OTF-LNS. We observe that while some feature combinations enable high
predictive performance, this does not directly translate to OTF-LNS being able
to find high quality solutions as, for example, crucial solution arcs might not fit
the learned average properties of solution arcs due to the structural complexity
of the problem. Thus, our investigation reveals a fundamental limitation of
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such ML-based pruning approaches: superior predictive performance does not
generally imply better solutions of the optimization. Enhancing the pure ML-
based sparsification by employing the predictions as nearness criterion for the
k-NN sparsening allows for controlling the node degrees and can lead to significant
improvements depending on the employed features. Still, in the end we find that
pure rank-based features in respect to travel times work best in our problem
setting, allowing for substantial sparsification of large benchmark instances by a
learned model and boosting the performance of OTF-LNS to beat the so far best
solving approach, making it the new state-of-the-art on these instances.

Investigation of more advanced graph neural networks and their learning
capabilities as by Sun and Yang [27] could be an interesting further line of research,
but the literature is still scarce in this respect. Moreover, applying graph neural
networks to dense graphs also does not come without issues when considering
huge instances. As supervised learning based on exemplary solutions also has its
limits, reinforcement learning is another promising direction to explore.
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