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Abstract

Motivated by the large amount of research on the expressivity of GNNs, we study
the impact of expressivity on the predictive performance of GNNs. By performing
knowledge distillation from highly expressive teacher GNNs to less expressive
student GNNs, we demonstrate that knowledge distillation reduces the predictive
performance gap between teachers and students significantly. As knowledge
distillation does not increase the expressivity of the student GNN, it follows that
most of this gap in predictive performance cannot be due to expressivity.

1 Introduction

Figure 1: Two graphs that cannot be dis-
tinguished by MPNNs.

We investigate whether expressivity causes more expres-
sive graph neural networks (GNNs) to achieve better pre-
dictive performance than less expressive architectures. Ex-
pressivity, as a measure of the amount of non-isomorphic
graphs that can be distinguished, is necessary to achieve
different predictions for different graphs. It is known
that common GNN architectures have limited expressivity:
Consider the graphs in Figure 1, message passing graph
neural networks (MPNNs)—the most common GNN—are
known to be unable to distinguish these graphs[Xu et al., 2019, Morris et al., 2019]. It follows that
MPNNs are unable to learn any function that has different outputs for these graphs. This negative
result is independent from the amount of training data and the actual number of weights. Recently, a
lot of effort has been devoted towards building higher-order GNNs, i.e., GNNs that are provably more
expressive than MPNNs. While many papers [Morris et al., 2019, Bevilacqua et al., 2021, Bodnar
et al., 2021, Morris et al., 2020, Zhao et al., 2022, Bouritsas et al., 2022, Feng et al., 2022, Barceló
et al., 2021, Qian et al., 2022, Morris et al., 2022, Frasca et al., 2022, Vignac et al., 2020, Zhang
et al., 2024a] provide higher-order architectures which empirically surpass MPNNs, it is not clear
whether this improvement in predictive performance is actually due to expressivity or other inductive
biases. Indeed, in a recent position paper, Morris et al. [2024a] have argued that the influence of
GNN expressivity on generalization ability of GNNs is still underexplored.

In this work, we perform knowledge distillation [Buciluǎ et al., 2006] from higher-order teacher GNNs
to less-expressive student MPNNs. We show that knowledge distillation can close the predictive
performance gap between teacher GNNs and student MPNNs. This improvement shows that most of
the initial gap in predictive performance without distillation is not due to expressivity.
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Table 1: All GNNs used in this paper.

Model Type > MPNN Citation

GIN Message Passing (MPNN) ✗ Xu et al. [2019]
GSN MPNN + Counting Subgraphs ✓ Bouritsas et al. [2022]
CWN Topological GNN ✓ Bodnar et al. [2021]
DSS Subgraph GNN ✓ Bevilacqua et al. [2021]
L2GNN Local 2-GNN ✓ Morris et al. [2020]

2 Related Work

Expressivity Graphs are defined on unordered sets of nodes and defining a canonical ordering
seems computationally hard [Babai, 2016]. This means that isomorphic graphs can have different
representations. GNNs are designed to be permutation invariant which means that they compute the
same prediction for all isomorphic graphs. It follows, that if a GNN computes different embeddings
for two graphs, these two graphs cannot be isomorphic. The ability of a GNN to distinguish pairs of
graphs is referred to as expressivity and is measured by comparing the sets of graph pairs that can be
distinguished by different GNN types. For MPNNs — the most common type of GNN — Xu et al.
[2019] and Morris et al. [2019] have shown that their expressivity is limited by the Weisfeiler-Leman
graph isomorphism test (WL) [Weisfeiler and Leman, 1968]. Note, that this limitation persists even
if the MPNN has an infinite number of layers, weights, and training data. As a result, MPNNs
are unable to distinguish simple graphs (see Figure 1) or compute properties that are important to
molecular predictions such as cycle counts [Chen et al., 2020]. To improve predictive performance —
mainly for molecular tasks — researchers have developed more expressive GNNs and demonstrated
that they outperform MPNNs. Of particular relevance in the community are the GNNs we investigate
in this paper. We list them in Table 1.

Knowledge Distillation Knowledge distillation was introduced by Buciluǎ et al. [2006] to compress
a larger model by training a smaller model on artificially generated data labeled by the larger model.
We refer to the survey of Gou et al. [2021] for general information about knowledge distillation and
to Tian et al. [2023] for knowledge distillation on GNNs. We could not find any previous work that
uses knowledge distillation to analyze the impact of expressivity on predictive performance of GNNs.

3 Methodology

We perform knowledge distillation from a teacher GNNT to a student GNNS. We use two methods for
knowledge distillation: (1) we add an additional loss term such that the student learns similar graph
embeddings as the teacher and (2) we extend the original training dataset with generated graphs. Note
that knowledge distillation only affects the training and leaves the evaluation completely untouched.
This ensures that we have no data contamination caused by leaking information about the test set.

Layer alignment. We use the pooled embedding generated by each layer of GNNT to align the
learned layers of the student with the teacher. Let G be a graph from with label y and ŷ be the label
predicted by the student. We denote the global pooling operation of a GNN as

⊕
and the pooled

graph embedding produced in layer i as
⊕

GNN(i)(G). Figure 2 shows the process of knowledge
distillation for a single training graph. For a teacher GNNT with L ≥ 1 layers we construct a student
with k · L+ l layers where k ≥ 1 and l ≥ 0 are hyperparameters. We perform knowledge distillation
by training the student with a special loss function

L(G, y, ŷ) = Lpred(y, ŷ) + α · Lemb(GNNT(G),GNNS(G)). (1)

Here, Lpred could be any loss function; for our experiments we chose the same loss function that
was used to train GNNT. We call Lpred(y, ŷ) the prediction loss and Lemb(GNNT(G),GNNS(G)) the
embedding loss which we define as the squared Euclidean distance between the pooled embeddings

Lemb(GNNT(G),GNNS(G)) =

L∑
ℓ=1

L(i)
emb =

L∑
ℓ=1

∥∥∥⊕GNN(ℓ)
T (G)−

⊕
GNN(kℓ)

S (G)
∥∥∥2
2
.
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Figure 2: Illustration of knowledge distillation from a teacher GNN to a student GNN.

The constant α ≥ 0 in Equation (1) makes it possible to tune the importance of the embedding loss
relative to the prediction loss. We chose α = 10. For classification tasks, we additionally change
Lpred by having the student predict the “soft” logits of the teacher instead of the “hard” training set
labels. For this, we generate the labels y with the teacher and use L1 as a loss function.

Extending Training Set. In some cases, adapting the loss function is not sufficient to significantly
improve the predictive performance of the student. In this case, we augment the training set by
generating new graphs and labeling them with the teacher. In total, we generate m times as many
graphs as in the original training set and say we augment the dataset with a factor of m. To generate
graphs, we simply modify graphs in the training set by randomly changing features, adding edges,
and dropping edges (more information in Appendix A.2).

Relation to Expressivity. MPNNs are limited in expressivity by WL [Xu et al., 2019, Morris et al.,
2019]. This limitation persists even when using knowledge distillation, regardless of the model’s size
or parameters. As a result, knowledge distillation cannot enhance the expressivity of a student model
beyond the WL limit. If a teacher model is more expressive than WL, the student will remain less
expressive, even after distillation. Therefore, if knowledge distillation greatly reduces the predictive
performance gap between student and teacher it follows that this gap cannot be due to expressivity as
knowledge distillation does not extend expressivity beyond WL.

4 Experiments

We focus our experiments on the two most commonly used molecular datasets in which an increase in
expressivity usually leads to better predictive performance. While we would have preferred to perform
experiments on more datasets, it is difficult to find datasets with a significant gap between more
elaborate models and baselines where this gap persists even after elaborate tuning of the baselines
(see for example Tönshoff et al. [2023]). We perform knowledge distillation from four different
teacher GNNs (see Table 1) to one student MPNN GIN [Xu et al., 2019] on three datasets: ZINC
(12k graphs) [Gómez-Bombarelli et al., 2018, Sterling and Irwin, 2015] and MOLHIV (41k graphs)
[Hu et al., 2020]. We perform knowledge distillation for all combinations of datasets and teachers as
long as the teacher outperforms the student (without knowledge distillation) on the dataset. For all
three datasets, we use Lemb as described in Section 3. For MOLHIV we use the soft targets from the
teacher (all other datasets are regression datasets) and do not augment the training set as this is not
necessary for the student to achieve teacher performance. For the ZINC dataset we also experiment
with increasing the training set size up to an augmentation factor m of 220 for ZINC.

Our teachers are trained with standard hyperparameters that are common to each dataset, for more
details about the teachers see Appendix A.1. Students on ZINC are designed to have 23 message
passing layers, this is significantly more than common but we have found this to work well in
preliminary experiments. We validate our design decisions on ZINC in an ablation study where we
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Table 2: Results on ZINC (m = 220).

Teacher Student
Performance

Teacher
Performance

- 0.187± 0.005 -
CWN 0.143± 0.004 0.13
DSS 0.123± 0.005 0.094
GSN 0.116± 0.001 0.1

L2GNN 0.12 ± 0.01 0.07

Table 3: Results on MOLHIV.

Teacher Student
Performance

Teacher
Performance

- 77.9± 1 -
CWN 79.6± 0.4 80.1

L2GNN 79.0± 0.2 78.6
GSN 78.8± 0.6 80

ablate both the impact of a larger model and of layer alignment via the special loss term (see Section 3).
On MOLHIV, our students simply use the same number of layers and embedding dimensions as the
teachers. However, preliminary experiments showed that for students to achieve a good performance
on MOLHIV, they need a variable learning rate (in contrast to the commonly used constant learning
rate) and that the validation set is unreliable for selecting a good model. Thus, for MOLHIV we use a
Cosine learning rate scheduler and use the model after the last epoch as the final model.

Figure 3: Results on ZINC with GSN as a
teacher for different augmentation factors m.

Results. Overall, knowledge distillation gives a
consistent boost in performance to students for all
datasets. Interestingly, results vary for different
datasets but are mostly uniform across different mod-
els. For MOLHIV, Table 3 shows that all students
get a significant boost in performance and obtain
results that are similar to the teachers. For ZINC,
Table 2 shows that students achieve big boosts in per-
formance but also that there is still a small gap in
performance between teachers and students. Figure 3
shows the relation between student performance and
dataset augmentation (figures for the other models
can be found in Appendix A.3). We can see that
initially, the performance clearly improves when the
augmentation factor is increased. However, this im-
provement soon levels off which indicates that this is
the limit of the distillation procedure. Finally, Table 4
shows an ablation study. First, we can see that data
augmentation already leads to an improvement above the baseline (5 layers, no distillation) that is
further improved when we use layer alignment. Secondly, we can see that without knowledge distilla-
tion an MPNN with few layers outperforms an MPNN with a large amount of layers. Interestingly the
opposite is the case with distillation which means that such a large MPNN cannot be trained without
distillation. For more information see about the ablations see Appendix A.3.

5 Conclusion

Table 4: Ablations on ZINC with DSS as teacher, for model
with knowledge distillation we set m = 100.

Layers Knowledge Distillation Test MAE

5 None 0.187± 0.005
23 None 0.282± 0.009
23 Augmentation only 0.162± 0.008
5 Alignment&Augmentation 0.171± 0.004
23 Alignment&Augmentation 0.141± 0.008

We introduced knowledge distillation
as a tool to study the impact of expres-
sivity on the predictive performance of
GNNs. Our experiments indicate that
most of the gap between higher order
GNNs and MPNNs is not due to expres-
sivity: Knowledge distillation cannot
increase the expressivity of the student.
However, using distillation, we reduced
the gap between less expressive students
and more expressive teachers. In some
cases, we even closed it. This implies that the majority of the gap in predictive performance cannot
be due to expressivity. We leave an investigation for the true cause of this gap as open work.
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Table 5: Hyperparameters on ZINC. * marks that the student hyperparameter is dependent on the
teacher.

Student GSN CWN DSS L2GNN

Num. layers 23 5 5 5 5
Emb. dim. * 256 256 256 256
Pooling * sum mean mean sum
Dropout 0 0 0.5 0.5 0
Batch size 512 128 128 128 128
Epochs 1000 1000 1000 1000 1000
LR 10−3 10−3 10−3 10−3 10−3

LR scheduling Reduce On
Plateau

Reduce On
Plateau

Reduce On
Plateau

Reduce On
Plateau

Reduce On
Plateau

Min. LR 2.5 · 10−4 10−5 10−5 10−5 10−5

Table 6: Hyperparameters on MOLHIV. * marks that the student hyperparameter is dependent on the
teacher.

Student GSN CWN L2GNN

Num. layers * 5 4 5
Emb. dim. * 64 64 32
Pooling * sum mean sum
Dropout 0 0.5 0.5 0.5
Batch size 128 32 32 32
Epochs 100 100 100 100
LR 10−3 10−3 10−3 10−3

LR scheduling Cosine - - -

A Appendix

Our code can be found at https://github.com/ocatias/KnowledgeDistillationGNNs_
SciForDL.

A.1 Details about Teachers

We use four different teacher models: GSN [Bouritsas et al., 2022], CWN [Bodnar et al., 2021],
DSS [Bevilacqua et al., 2021] and L2GNN [Morris et al., 2020]. Our implementation of GSN, is a
simple GIN model together with subgraph counts attached to the node features. For this, we count
the number of cycles of length up to 9 in each graph and for each ℓ ∈ {3, . . . , 9} we attach to each
node the number of ℓ cycles that this node is a part of. For CWN, we use a lifting map the lifts all
cycles of length up to ℓ to cells and performs message passing on the resulting cell complex. Our
implementation is based on a simulation i.e. a graph transformation together with an MPNN [Jogl
et al., 2023]. DSS is a subgraph GNN and uses a policy that extracts all 3-hop subgraphs. Finally,
L2GNN is a local 2-GNN [Morris et al., 2020] for which we use an implementation by Zhang et al.
[2024b].

Hyperparameters The hyperparameters are shown in Tables 5 and 6. Note that when we perform
knowledge distillation we adapt the hyperparameters to speed up the experiments (by increasing the
batch size and for “Reduce on Plateau” scheduling increasing the minimum learning rate).

A.2 Data Augmentation

On ZINC we evaluate the effectiveness of data augmentations for knowledge distillation. We chose
a simple procedure to generate new graphs that is based on modifying graphs in the dataset. For a
given graph with edges E, our procedure begins by iterating through all edges and dropping each
edge from E with a probability of 0.05. Then, we randomly add edges to the graph, in total we
add E · 0.05 edges. For each newly added edge, we generate its edge features by dimension-wise
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Figure 4: Graphs generated by our method based on the ZINC dataset.

randomly drawing features from the marginal edge feature distribution of the training set. Finally,
we change each node-feature dimension-wise with a probability of 0.051. Similarly to edge features,
whenever a dimension of a node feature gets changed we randomly sample from the marginal feature
distribution on the training set conditioned on the node degree. Figure 4 shows a graph generated in
this way.

A.3 Additional Experimental Details and Results

Figure 5 shows how different teachers on ZINC scale with the data augmentation factor. In the
ablation study we compare the following models, the results can be found in Table 4.

1. GIN with 5 message passing layers and no knowledge distillation.
2. GIN with 23 message passing layers and no knowledge distillation.
3. GIN with 23 message passing layers and data augmentation only (m = 100). That means

the model is only trained to predict the output of the teacher and no additional loss term is
used.

4. GIN with 5 message passing layers data augmentation (m = 100) and layer alignment i.e.,
the additional loss term from 3..

5. Same as above but with 23 message passing layers.

The idea behind this is that (1) and (2) check whether our improvements on ZINC are only due to
the fact that we use a larger model as a student. (3) and (5) checks whether layer alignment and
augmentation performs better than augmentation alone. (4) and (5) checks whether a larger model
truly performs better for knowledge distillation.

1Except for DSS on ZINC where this value is 0.2. This was not intentional but seems to have little impact on
the results.
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Figure 5: Results on ZINC with for all teachers and different augmentation factors.
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B Debunking Challenge Submission

B.1 What commonly-held position or belief are you challenging?

Provide a short summary of the body of work challenged by your results. Good summaries should
outline the state of the literature and be reasonable, e.g. the people working in this area will agree
with your overview. You can cite sources beside published work (e.g., blogs, talks, etc).

Starting with Xu et al. [2019], Morris et al. [2019] expressivity—i.e, the ability to distinguish non-
isomorphic graphs—has served as motivation for more and more new GNN architectures. Many
GNNs are specifically designed to be sufficiently expressive to solve specific tasks. For instance,
cyclic structures are important for molecular tasks leading to GNNs that are designed to perform
message passing on cycles [Bodnar et al., 2021], incorporate cycle counts [Bouritsas et al., 2022], or
are maximally expressive for graph classes common among molecules [Bause et al., 2023, Dimitrov
et al., 2023]. Furthermore, a diverse range of general-purpose GNNs designed primarily to be
more expressive has emerged: subgraph-based GNNs [Bevilacqua et al., 2021], path-based GNNs
[Graziani et al., 2024, Paolino et al., 2024, Michel et al., 2023], and those utilizing higher-dimensional
Weisfeiler-Lehman (WL) variants [Morris et al., 2019, 2020, Müller and Morris, 2024], among others.
These highly expressive GNNs often exhibit superior predictive performance compared to their less
expressive counterparts. However, at the moment there are no obvious theoretical arguments that
show that more expressive GNNs generalize better on real world data, after all most real-world
data can be distinguished by less expressive MPNNs [Zopf, 2022]. Despite this, expressivity has
served as the primary motivation to develop new GNN architectures and often as the only provided
explanation of their improved predictive performance. A recent positional paper by leading GNN
researchers [Morris et al., 2024b] identified several open research directions based on developing a
more nuanced understanding of expressivity and its link to the generalization capabilities of GNNs.
Thus, the community is already trying to shift towards developing an understanding of the impact
of expressivity on predictive performance. An important first step in this direction is asking the
fundamental question: Is expressivity truly the reason why highly expressive GNNs perform better?
We challenge the belief that expressivity is the primary factor behind the strong performance of these
models.

B.2 How are your results in tension with this commonly-held position?

Detail how your submission challenges the belief described in (1). You may cite or synthesize results
(e.g. figures, derivations, etc) from the main body of your submission and/or the literature.

Our experiments show that knowledge distillation significantly reduces the gap between highly
expressive teachers and less expressive students. For ZINC this reduction is 57-82% (Table 2) and
for MOLHIV it is 42-100% (Table 3). Note that these are two of the most prominent datasets used
to demonstrate the empirical effectiveness of novel GNNs with high expressivity (see for example
Bodnar et al. [2021], Bevilacqua et al. [2021], Morris et al. [2020]). As knowledge distillation
reduces the gap in predictive performance between expressive GNN teachers and less expressive
GNN students it follows that the majority of this gap is not due to expressivity. The reasoning for
this is simple: knowledge distillation cannot increase the expressivity of the student but does clearly
reduce the gap in performance between such models.

B.3 How do you expect your submission to affect future work?

Perhaps the new understanding you are proposing calls for new experiments or theory in the area, or
maybe it casts doubt on a line of research.

We believe that our work will lead to a more nuanced understanding of expressivity and its relevance
to practical performance. Our work shows that expressivity is not the key driver behind GNN
performance. We hope that knowledge about this fact will shift the community’s understanding of
expressivity analysis. Ideally, expressivity analysis of novel architectures will in the future be seen as
a worst case analysis of the limitations of a given architecture. After all, if a GNN cannot distinguish
two graphs, it will not be able to learn any function that requires to handle them separately. We hope
that our work motivates researchers to develop novel analysis methods that are well-aligned with
predictive performance.
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