SUSAN: The Structural Similarity Random
Walk Kernel

Janis Kalofolias, Pascal Welke, Jilles Vreeken

I
SV C I s I,A "@,@" UNIVERSITAT "
: Il
z u"uuwm o

i p 1
%1\ | HELMHOLTZ-ZENTRUM i.G SAARLANDES mepla UNIVERSITAT

Comparing graphs

~
Z

1

\)—;—.

N
l// / \}g/
o e
D7
genetic \l
structure =
-_

proteins

Machine learning methods

Applications Standard Tools

Comparing graphs

genetic
structure —
——
. -_—
proteins
Machine learning methods
Applications Standard Tools

Classification, Regression,
Clustering, Dim. Reduction

Comparing graphs

genetic
structure =
——
. -_
proteins
Machine learning methods
Applications Standard Tools
Classification, Regression, SVM, Logistic,

Clustering, Dim. Reduction K-Means, PCR

Comparing graphs

genetic
structure

proteins

Applications
Classification, Regression,
Clustering, Dim. Reduction

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

Can we apply standard tools on graphs?

Comparing graphs

genetic
structure

proteins

Applications
Classification, Regression,
Clustering, Dim. Reduction

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Comparing graphs

genetic

structure =
) —y
proteins
Machine learning methods
Applications Standard Tools
Classification, Regression, SVM, Logistic,
Clustering, Dim. Reduction K-Means, PCR
Non-vectorial data ¢--------- X--------- % Need vector data

Can we apply standard tools on graphs?

Comparing graphs

genetic
structure

proteins

Applications
Classification, Regression,
Clustering, Dim. Reduction

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Comparing graphs

genetic
structure

proteins

Applications
Classification, Regression,
Clustering, Dim. Reduction

Non-vectorial data

Machine learning methods

Standard Tools
SVM, Logistic,
K-Means, PCR

Need vector data

Can we apply standard tools on graphs?

Comparing graphs

genetic
structure =
) —y
proteins
Machine learning methods
Applications Standard Tools
Classification, Regression, SVM, Logistic,
Clustering, Dim. Reduction K-Means, PCR
Non-vectorial data Need vector data

Can we apply standard tools on graphs?

—> Use a kernel on graphs

How do kernels compare graphs?

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G5)?

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

. B Kernels define a space H

with (-,-) and mapping function ¢

Hilbert
Space
H

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

. B Kernels define a space H

with (-,) and mapping function ¢

Hilbert
Space
H

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

Kernels define a space H
with (-, -} and mapping function ¢

Hilbert
Space

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

Kernels define a space H
with (-,-) and mapping function ¢

Hilbert = Use as graph similarity
Space
o Gl 5 G2

<>

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

. ¥ B Kernels define a space H

with (-,-) and mapping function ¢

’ I ZI:,Z: = Use as graph similarity
H ()(Gl), ()(G2)
A
° ."//

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

Kernels define a space H
with (-,-) and mapping function ¢

Hilbert

= Use as graph similarity
Space

($(G1), 6(G2)),

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

Kernels define a space H
with (-,-) and mapping function ¢

Hilbert

= Use as graph similarity
Space

k(G1, G2) = (8(G1), p(G2)),,

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

Kernels define a space H
with (-,-) and mapping function ¢

Hilbert

= Use as graph similarity
Space

k(G1, G2) = (¢(G1), 8(G2)),,

Y

How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

Kernels define a space H
with (-,-) and mapping function ¢

Hilbert = Use as graph similarity

k(G1, G2) = (¢(G1), 8(G2)),,

(0, @)

>
.

We focus on Random Walk kernels

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

ex: 3-step walk: (1,2,3,4)

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

ex: 3-step walk: (1,2,3,4)

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

. E @ Goal: Count graph walks
1@ '/\.\54

1-step walks from 1,37

= = O =
— O ~ O

1
0
1
0

o o = o
o = = O

24 A X0

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

. E @ Goal: Count graph walks
1 e '/\.\54

1-step walks from 1,37

0 [0 1 0 0] [1
2| {101 1|0
ol |01 0 1]]1
1 011 0|0

—_~ ——
24 A X0

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

Gy

1-step walks from 1,37

= O Mo O

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

Gy

1-step walks from 1,37

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

. E @ Goal: Count graph walks
1@ '/\.\54

1-step walks from 1,37

0 1
2 0
0 1

= = O =
— O ~ O
o R R O

[0

1

0

1 10 0

24 A X0
#k-step walks from xp?
xi = Akxg

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count graph walks

4 But: in 2 graphs?

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

ol 2™
L 4 But: in 2 graphs?
. = Assume vertex alignment
b=2 eg:a=1,b=2c=3,d=4
c=3
NN = Create alignment graph
alignment
graph

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

alignment
graph

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4

= Create alignment graph

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

alignment
graph

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4

= Create alignment graph

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

alignment
graph

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4

= Create alignment graph

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

alignment
graph

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4

= Create alignment graph

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

alignment
graph

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4

= Create alignment graph

Random Walk (Reproducing) Kernels

[Gartner et al., 2003]

alignment
graph

@ Goal: Count common walks

But: in 2 graphs?

Assume vertex alignment
eg:a=1,b=2c=3,d=4
Create alignment graph

Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

But: in 2 graphs?
= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph

= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

But: Alignments are rarely available

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

direct product
graph

@ Goal: Count common walks

But: in 2 graphs?
= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph
= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2
But: Alignments are rarely available
— Use all possible alignments

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

But: in 2 graphs?
= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph

= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

direct product

graph But: Alignments are rarely available
Direct product graph: —> Use all possible alignments
Ac=AQA

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph

= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

direct product

graph But: Alignments are rarely available
Direct product graph: —> Use all possible alignments
Ac=AQA

Axxy = (Ax) @ (A'X")

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph

= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

direct product

graph But: Alignments are rarely available
Direct product graph: —> Use all possible alignments
Ac=AQA

But: If vertices are not similar?
Axxy = (Ax) @ (A'X")

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph

= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

direct product

graph But: Alignments are rarely available
Direct product graph: —> Use all possible alignments
Ac=AQA

But: If vertices are not similar?
Axxy = (Ax) @ (A'X")

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph

= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

direct product

graph But: Alignments are rarely available
Direct product graph: —> Use all possible alignments
_ /
A= ABA But: If vertices are not similar?
Axxy = (Ax) @ (A'X’) — Not all alignments equally good

Are all vertex alignments equally good?

= Dissimilar vertices can be noisy

= Do not contribute to similarity

Are all vertex alignments equally good?

= Dissimilar vertices can be noisy Onl tch simil "
— Only match similar vertices

= Do not contribute to similarity

Are all vertex alignments equally good?

= Dissimilar vertices can be noisy o)
= Only match similar vertices

= Do not contribute to similarity

Labeled vertices

N i
Y vs “CH,
H o CHy

V' same label = similar vertices

Are all vertex alignments equally good?

= Dissimilar vertices can be noisy o i
= Only match similar vertices
= Do not contribute to similarity
Labeled vertices

N i
JOU e o
H O CH,

V' same label = similar vertices
X G, has no O. What now?
X How close is C to H?

Are all vertex alignments equally good?

= Dissimilar vertices can be noisy o)
= Only match similar vertices

= Do not contribute to similarity

Labeled vertices Unlabeled graphs

N i
T VS “cH,
Hi CH,

V' same label = similar vertices

X G, has no O. What now? v/ many similarity measures

X How close is C to H? X not always clear or easy

Are all vertex alignments equally good?

= Dissimilar vertices can be noisy o)
= Only match similar vertices

= Do not contribute to similarity

Labeled vertices Unlabeled graphs

N i
T VS “cH,
Hi CH,

V' same label = similar vertices
X G, has no O. What now?
X How close is C to H?

v/ many similarity measures

X not always clear or easy

We seek a vertex partitioning
= structurally aware
= efficient to compute

= defines partition similarity

Are all vertex alignments equally good?

= Dissimilar vertices can be noisy o)
= Only match similar vertices

= Do not contribute to similarity

Labeled vertices Unlabeled graphs

N i
T VS “cH,
Hi CH,

V' same label = similar vertices
X G, has no O. What now?
X How close is C to H?

v/ many similarity measures

X not always clear or easy

We seek a vertex partitioning
= structurally aware We propose to use
= efficient to compute = core decomposition

= defines partition similarity

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
{
(

? o
°

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Decomposition: x: V — N

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Definition (vertex
coreness)

A\
/ k(u) == max k

ueH(k)

Decomposition: x: V — N

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
° HO) Definition (
° efinition (vertex
— </<\/ \ coreness)
E i k(u) = max k
‘\\ e / <\ / ueH(k)

Decomposition: x: V — N

= k-core vertices have similar structure [Shin et al., 2016]

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example
°
® H(3) Definition (vertex
— </<\/ \ coreness)
E — k(u) == max k
.\\ Za / <\ / ueH(k)

Decomposition: x: V — N

= k-core vertices have similar structure [Shin et al., 2016]
= Needs only O(n). [Batagelj and Zaversnik, 2003]

Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Definition (vertex
coreness)

A\
/ k(u) == max k

ueH(k)

Decomposition: x: V — N

= k-core vertices have similar structure [Shin et al., 2016]
= Needs only O(n). [Batagelj and Zaversnik, 2003]

= Intuitive comparison between labels 5

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

direct product
graph

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

Use core values as integer labels

and/or existing labels

direct product
graph

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

direct product
graph

@ Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers <= similar structure

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

direct product
graph

@ Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers <= similar structure

alignment similarity from label kernel

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

Use core values as integer labels

and/or existing labels
close integers <= similar structure
alignment similarity from label kernel

direct product
graph

Use kernel over Z

ks(1, ') == max (o, 1- 'g;’i‘)

where §: bounded support

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

Use core values as integer labels

and/or existing labels

close integers <= similar structure

alignment similarity from label kernel
Depending on ¢:

direct product
graph

Use kernel over Z

ks(1, ') == max (o, 1- 'g;’i‘)

where 0: bounded support

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers <= similar structure

alignment similarity from label kernel

Depending on §:
m) =00 vanilla RW

direct product t |
Een oo loose

Use kernel over Z

ks(1, ') == max (o, 1- 'g;’i‘)
where §: bounded support

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

Use core values as integer labels
and/or existing labels

close integers <= similar structure

alignment similarity from label kernel

Depending on §:
m) =00 vanilla RW

direct product
graph

too loose

Use kernel over Z

ks(1, ') == max (o, 1- 'g;’i‘)
where §: bounded support

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

G 4 Use core values as integer labels
and/or existing labels
close integers <= similar structure
alignment similarity from label kernel
Depending on §:

O/:>%< =) =00 vanilla RW

direct product

graph too loose
Use kernel over 7Z = =0 . [Gartner et al., 2003]
ks(1,1) := max (0, 1— |g—+/i\> too strict

where §: bounded support

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

G 4 Use core values as integer labels
and/or existing labels
close integers <= similar structure
alignment similarity from label kernel
Depending on §:

O/:>%< =) =00 vanilla RW

direct product

graph too loose
Use kernel over 7Z = =0 | [Gartner et al., 2003]
/(5(/7 //) ‘= max (0’ 1— |21/]/-‘> too strict

where §: bounded support

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

4 Use core values as integer labels

and/or existing labels

close integers <= similar structure

alignment similarity from label kernel
Depending on §:

O/:>%< =) =00 vanilla RW

direct product

Een too loose
Use kernel over 7Z = 0=0 [Gartner et al., 2003]
too strict

ks(1,) = max (0,1 - 'g;’i‘)
where §: bounded support » JERy SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

4 Use core values as integer labels

and/or existing labels

close integers <= similar structure

alignment similarity from label kernel
Depending on §:

O/:>%< =) =00 vanilla RW

direct product

Een too loose
Use kernel over 7Z = 0=0 [Gartner et al., 2003]
too strict

ks(1,) = max (0,1 — A1)
where §: bounded support » JERy SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

4 Use core values as integer labels

and/or existing labels

(4

close integers <= similar structure
alignment similarity from label kernel

e ©
e e @
e @ @
&_8_9o

Depending on §:

=) =00 vanilla RW
too loose

= 0=0 [Gartner et al., 2003]

direct product
graph

Use kernel over Z

ks(1,1) := max (0, 1— |g—+/i\> too strict
where §: bounded support = J Ry SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

Use core values as integer labels

and/or existing labels

close integers <= similar structure

alignment similarity from label kernel
Depending on §:

=) =00 vanilla RW
d'recgt,f,;cﬁd“d too loose

Use kernel over 7Z = 0=0 [Gartner et al., 2003]
too strict

ks(1,) = max (0,1 - 'g;’i‘)
where §: bounded support » JERy SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

Random Walk (Reproducing) Kernels [Gértner et al., 2003]

@ Goal: Count similar walks

Use core values as integer labels

and/or existing labels

close integers <= similar structure

alignment similarity from label kernel
Depending on §:

=) =00 vanilla RW
d'recgt,f,;cﬁd“d too loose

Use kernel over 7Z = 0=0 [Gartner et al., 2003]
too strict

ks(1,) = max (0,1 - 'g;’i‘)
where §: bounded support » JERy SUSAN
adaptive! e.g.: 0,0.5,1,1.5,2

[Gartner et al., 2003]

Random Walk (Reproducing) Kernels

direct product
graph

Use kernel over Z

N =]
ks(!1,1") == max (0,1 — 571)
where §: bounded support

@ Goal: Count similar walks

Use core values as integer labels
and/or existing labels
close integers <= similar structure
alignment similarity from label kernel
Depending on §:

m) =00 vanilla RW
too loose

= 0=0 [Gartner et al., 2003]
too strict

= J Ry SUSAN

adaptive! e.g.: 0,0.5,1,1.5,2

Computing the Kernel Il

Finally: sum # common walks: S
k(G1,Go) =e' > pnAle

n=0
———

= of any # steps (with weight 1)

= from each vertex to every other

Computing the Kernel Il

Finally: sum # common walks: -

k(G,G)=e' > pnAje
n=0
———

= of any # steps (with weight u,)

= from each vertex to every other

Computing the Kernel Il

Finally: sum # common walks: S
_ _ k(Gl,Gz)Z Z//HAQE

= of any # steps (with weight 1,) n—0
———

= from each vertex to every other

Computing the Kernel Il

Finally: sum # common walks: 0
k(Gl, Gz) = Y Z M,,Aﬂe

n=0
———

= of any # steps (with weight 1)

= from each vertex to every other

Computing the Kernel Il

Finally: sum # common walks: 0
k(Gl, Gz) = e‘ Z u,,AQe
n=0

= of any # steps (with weight 1)

= from each vertex to every other

Computing the Kernel Il

Finally: sum # common walks: S
k(G1,Go) =e' > pnAle

n=0
———

= of any # steps (with weight 1)

= from each vertex to every other

Practical weights p give:

» Geometric: B, = (I — MAL)te
= Exponential: B, = exp(Ay)e

Computing the Kernel Il

Finally: sum # common walks: S
k(G1,Go) =e' > pnAle

n=0
———

= of any # steps (with weight 1)

= from each vertex to every other

Practical weights p give:

» Geometric: B, = (I — MAL)te
= Exponential: B, = exp(Ay)e

— computable as matrix vector (MV) operations with A,

Computing the Kernel Il

Finally: sum # common walks:

o0
k(Gi, Gy) =e' Ale
= of any # steps (with weight 1) (61, Go) ,,Z:;)Mn .

———
= from each vertex to every other B

Practical weights p give:

» Geometric: B, = (I — MAL)te Conjugate Gradient
= Exponential: B, = exp(Ay)e [Al-Mohy and Higham, 2011]

— computable as matrix vector (MV) operations with A,

But: How do we compute the MV operations efficiently?

Computing the kernel II: Efficiently

To compute SUSAN efficiently

Computing the kernel II: Efficiently

To compute SUSAN efficiently

Lemma
The MV operator for SUSAN with bandwidth § is computable as

A.x=To (A"(ToX)AT)
for T block banded with constant blocks and bandwidth o, time
O((8 +1)(n" + n")b?)
for b the largest core size and n’, n” the vertex numbers of G', G".

Computing the kernel II: Efficiently

To compute SUSAN efficiently

= we decompose the contribution of each graph

Lemma
The MV operator for SUSAN with bandwidth § is computable as

Ax=To A (ToX)A")
for T block banded with constant blocks and bandwidth o, time
O((8 +1)(n" + n")b?)
for b the largest core size and n’, n” the vertex numbers of G', G".

Computing the kernel II: Efficiently

To compute SUSAN efficiently
= we decompose the contribution of each graph
= this reveals a block structure

Lemma
The MV operator for SUSAN with bandwidth § is computable as

A.x=Tao (A"(ToX)AT)
for T block banded with constant blocks and bandwidth o, time
O((8 +1)(n" + n")b?)
for b the largest core size and n’, n” the vertex numbers of G', G".

Computing the kernel II: Efficiently

To compute SUSAN efficiently
= we decompose the contribution of each graph
= this reveals a block structure

= groupping the vertices of equal coreness

Lemma
The MV operator for SUSAN with bandwidth § is computable as

A.x=To (A"(ToX)AT)
for T block banded with constant blocks and bandwidth §, time
O((8 +1)(n" + n")b?)
for b the largest core size and n’, n” the vertex numbers of G', G".

Computing the kernel II: Efficiently

To compute SUSAN efficiently
= we decompose the contribution of each graph
= this reveals a block structure
= groupping the vertices of equal coreness
= exploit the bounded support

Lemma
The MV operator for SUSAN with bandwidth § is computable as

A.x=To (A"(ToX)AT)
for T block banded with constant blocks and bandwidth o, time
O((8 +1)(n" + n")b?)
for b the largest core size and n’, n” the vertex numbers of G', G".

Computing the kernel II: Efficiently

To compute SUSAN efficiently
= we decompose the contribution of each graph
= this reveals a block structure
= groupping the vertices of equal coreness
= exploit the bounded support

= and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth § is computable as

A.x=To (A"(ToX)AT)
for T block banded with constant blocks and bandwidth o, time
O((6 4+ 1)(n' + n")b?)
for b the largest core size and n’, n” the vertex numbers of G', G".

Results

Time comparison

1; T == V ~==
] geometric
0.11
v 3
£ .
F 0.01- _ _
T 1 Relative wall-clock time
2] e =
] exponential (SUSAN vs. naive)
T Peking
B OHSU
KKT
0.1 : ‘ :
0 5) 10 15 20

bandwidth §

Time comparison

geometric

5
J
(
!

Ll

0.1
[

£

= 0.01-,

T 1 L ,

exponential

Lol

Peking
E OHSU
KKT
0.1 : : ‘
0 5 10 15 20
bandwidth ¢
SUSAN

= outperforms naive computation, especially for small 4.

Time comparison

S, = Number of iterations
85 20)
s 18 until convergence
58 # SUSAN
(L3N]
> 16 / X Unbounded
0 5 10 15 20
bandwidth &
SUSAN

= outperforms naive computation, especially for small .

Time comparison

S, = Number of iterations
85 20)
s 18 until convergence
58 SUSAN
© 0O
> 16 / x Unbounded
0 5 10 15 20
bandwidth &
SUSAN

= outperforms naive computation, especially for small .

= (geometric) converges faster for smaller .

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose
m coreness as structurally-aware vertex labels

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels

= induce intuitive vertex similarity

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels

= induce intuitive vertex similarity
= bounded support kernel over coreness

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels

= induce intuitive vertex similarity
= bounded support kernel over coreness

OO

With our work

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels
= induce intuitive vertex similarity
= bounded support kernel over coreness

With our work ;
= close the gap between loose and strict alignment constraints

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels

= induce intuitive vertex similarity
= bounded support kernel over coreness

With our work
= close the gap between loose and strict alignment constraints

= competitive classification accuracy for certain datasets

10

Conclusion

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels

= induce intuitive vertex similarity
= bounded support kernel over coreness

With our work
= close the gap between loose and strict alignment constraints
= competitive classification accuracy for certain datasets

= efficient iterative scheme for practical variants

10

Conclusion Thank you!

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels

= induce intuitive vertex similarity
= bounded support kernel over coreness

With our work
= close the gap between loose and strict alignment constraints
= competitive classification accuracy for certain datasets

= efficient iterative scheme for practical variants

10

References i

[3 Al-Mohy, A. H. and Higham, N. J. (2011).
Computing the Action of the Matrix Exponential, with

an Application to Exponential Integrators.
SIAM J. Sci. Comp.

E Batagelj, V. and Zaversnik, M. (2003).
An O(m) Algorithm for Cores Decomposition of

Networks.
arXiv:cs/0310049.

References ii

[W Gartner, T., Flach, P., and Wrobel, S. (2003).
On Graph Kernels: Hardness Results and Efficient
Alternatives.
In Learning Theory and Kernel Machines.

[W Shin, K., Eliassi-Rad, T., and Faloutsos, C. (2016).
CoreScope: Graph Mining Using k-Core
Analysis—Patterns, Anomalies and Algorithms.

In Data Mining (ICDM), 2016 IEEE 16th International
Conference On, pages 469-478. |IEEE.

	Results
	Appendix

