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Can we apply standard tools on graphs?

—> Use a kernel on graphs
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How do kernels compare graphs?

@ Goal: Can we define something like (Gy, G2)?

Kernels define a space H
with (-,-) and mapping function ¢

Hilbert = Use as graph similarity

k(G1, G2) = (¢(G1), 8(G2)),,

(0, @)

>
.

We focus on Random Walk kernels
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@ Goal: Count common walks

But: in 2 graphs?

= Assume vertex alignment
eg:a=1,b=2c=3,d=4
= Create alignment graph

= Walk in alignment graph
e.g.: b=2,c=3,d=4,b=2

direct product

graph But: Alignments are rarely available
Direct product graph: —> Use all possible alignments
_ /
A= ABA But: If vertices are not similar?
Axxy = (Ax) @ (A'X’) — Not all alignments equally good
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Are all vertex alignments equally good?

= Dissimilar vertices can be noisy o )
= Only match similar vertices

= Do not contribute to similarity

Labeled vertices Unlabeled graphs

N i
T VS “cH,
Hi CH,

V' same label = similar vertices
X G, has no O. What now?
X How close is C to H?

v/ many similarity measures

X not always clear or easy

We seek a vertex partitioning
= structurally aware We propose to use
= efficient to compute = core decomposition

= defines partition similarity
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Core decomposition

Definition (k-core of graph G)
A maximal subgraph with vertices of degree at least k.

Example

Definition (vertex
coreness)

A\
/ k(u) == max k

ueH(k)

Decomposition: x: V — N

= k-core vertices have similar structure [Shin et al., 2016]
= Needs only O(n). [Batagelj and Zaversnik, 2003]

= Intuitive comparison between labels 5
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Computing the Kernel Il

Finally: sum # common walks:

o0
k(Gi, Gy) =e' Ale
= of any # steps (with weight 1) (61, Go) ,,Z:;)Mn .

———
= from each vertex to every other B

Practical weights p give:

» Geometric: B, = (I — MAL)te Conjugate Gradient
= Exponential: B, = exp(Ay)e [Al-Mohy and Higham, 2011]

— computable as matrix vector (MV) operations with A,

But: How do we compute the MV operations efficiently?
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Computing the kernel II: Efficiently

To compute SUSAN efficiently
= we decompose the contribution of each graph
= this reveals a block structure
= groupping the vertices of equal coreness
= exploit the bounded support

= and reduce computational complexity.

Lemma
The MV operator for SUSAN with bandwidth § is computable as

A.x=To (A"(ToX)AT)
for T block banded with constant blocks and bandwidth o, time
O((6 4+ 1)(n' + n")b?)
for b the largest core size and n’, n” the vertex numbers of G', G".



Results
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Time comparison

S, = Number of iterations
85 20 )
s 18 until convergence
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© 0O
> 16 / x  Unbounded
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SUSAN

= outperforms naive computation, especially for small .

= (geometric) converges faster for smaller .
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Conclusion Thank you!

We study
= random walk graph kernels

= weighted vertex alignments

We propose
= coreness as structurally-aware vertex labels

= induce intuitive vertex similarity
= bounded support kernel over coreness

With our work
= close the gap between loose and strict alignment constraints
= competitive classification accuracy for certain datasets

= efficient iterative scheme for practical variants
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