Graph Neural Networks focus on relevant

subgraphs that chemist know for a long time

1) three-membered
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(2) three-membered  Mutagenicity dataset contains 4337 molecular graphs

heterocycle  (3) alphatic halide (4) (5)
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« 2401 mutagens and 1936 non-mutagens

 Graph Convolutional Neural Networks with
e sum pooling (left)
« mean pooling (right)

« Highlighted in red are substructures that influence the
metric space on hidden embeddings the most

(6) nitroso (7) (8) (9) * Four (resp three) of the ten most influential structures

(10) alphatic halide (6) (7) (8) nitroso (9) (10) _ .
are among seven toxicophores suspected to increase
mutagenic effect of molecules (Kazius et al., 2005)
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Graph Neural Networks align their hidden

embeddings with the metric in the target space
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e Training

e aligns the distances between hidden embeddings with
distances between targets
e disaligns structural metrics between graphs and
distances between hidden embeddings

We present a tunable, interpretable metric that
aligns with Graph Neural Network embeddings

G ® O H O O dWWL dWLOA CiWILT CZWILT
CJ ‘ (/, . ‘ Mutagenicity
mean  9.25+0.87 18.7443.36 1.7440.52 3.3441.01
sum 12254054  598+1.60 1.22+0.31 0.8240.17
ENZYMES
‘O e ‘0 'do mean 12.1840.23 16.794+2.33 2.71+0.38 4.64+0.67
sum  11.2840.65  6.83+0.41 9.15+0.47 1.43+0.10
Lipophilicity
s N (L) (L) mean 10.92+042 13.97+0.97 3.11£0.54 6.3541.22
dwir (G, H; w) = %16111} E E P jdpam (cy, y Cu ) sum  10.83+0.73 10.00+£1.34 2.5040.67 2.64+0.74
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where I' := {P ¢ RIVeIxIVul | p, , > 0,P1 =1,PT1 = + Structural graph metrics WWL, WLOA
1} |  WILTINg metric variants
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