
  

Graph Neural Networks focus on relevant 
subgraphs that chemist know for a long time

Graph Neural Networks align their hidden 
embeddings with the metric in the target space

We present a tunable, interpretable metric that 
aligns with Graph Neural Network embeddings
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● Mutagenicity dataset contains 4337 molecular graphs
● 2401 mutagens and 1936 non-mutagens

● Graph Convolutional Neural Networks with 
● sum pooling (left) 
● mean pooling (right)

● Highlighted in red are substructures that influence the 
metric space on hidden embeddings the most

● Four (resp three) of the ten most influential structures 
are among seven toxicophores suspected to increase 
mutagenic effect of molecules (Kazius et al., 2005)

● Training 
● aligns the distances between hidden embeddings with 

distances between targets
● disaligns structural metrics between graphs and 

distances between hidden embeddings

RMSE between
● Structural graph metrics WWL, WLOA
● WILTing metric variants
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