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Background

The Graph Filtration kernel - A concept overview The Weisfeiler-Lehman Filtration kernel
What are graph kernels? .. | - | | | — T | |
The Graph Filtration kernel is a graph similarity measure which considers graphs at multiple granularities. This is achieved by comparing feature The Weisfeiler-Lehman Filtration kernel is an instance of the Graph Filtration kernel.
Graph kernels are functions deﬁn]ng similarities between graphg. They allow for app“ca_ occurrence dlStI’IbUtIOﬂS over segquences of SUCh graph I’GSO|UJEIODS It employs the well-known Weisfeiler-Lehman features and, hence, compares graphs
fions of machine learning methods such as Support Vector Machines. One of the most based on the Weisfeiler-Lehman feature distribution over graph filtrations.
successful graph classification methods relies on graph kernels. From graph filtrations to kernels: Weisfeiler-Lehman features are generated by an iterative node relabeling procedure
Graph classification task: Which class should the gray graph be assigned to? Graph filtrations Filtration histograms Histogram distance Base kernels Graph Filtration kernel which compresses a node’s label and that of its neighbors into a new label.
closs 1 closs 2 We view graphs at in- The number of feature oc- For each feature, the The histogram distance is The Filtration Graph kernel
creasing resolution levels curences over the course of feature distribution his- “transformed” into a kernel is a linear combination of _ _ _
by considering only sub- filtration sequences is tracked tograms are compared function which compares base kernels. It compares Theoretical results for the WL Filtration kernel
sets of all edges accord- and expressed in form of fea- using optimal transport oraphs w.r.t. a specific fea- graphs based on different
ing to their relevance. ture distribution histograms. concepts. ture. resolutions of graphs. For the Weisfeiler-Lehman Filtration kernel, we show results about its linear complexity
as well as its expressive power.
Example:
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Traditional graph kernels o = o & bﬂﬂ_ ] ﬁ.ﬂ: i L LR £o6.6) exf’( y Wa (ﬂ“ﬂbﬂﬂ)) K (6.6) The Weisfeiler-Lehman filtration kernel KZ1"*(G, G’) on graphs G, G’ can be computed
| - | : | A A —_ . .
. ] ; . - . : , in time O(hkm), where
The majority of traditional graph kernels are based on Haussler’s R-convolution kernel © © 0 0 = = |- ﬂﬂ Bl 1 ﬂ = /{O(G'(’) ) e"f’('x\"/"‘ (L—”ﬂlﬂﬂ)) = | fpKe(66) , . . .
and define graph similarity by comparing counts of mutual features. They are of the form G: Gt - Gy - Gy T T +(§(§'/{ (6,6') " his number of Weisfeiler-Lehman iterations,
O O : O - O A A ) _ oo O . .
i - S i £(6.G) = exf( yWa (| o] e )) . . = kis the length of the filtration sequence, and
53 /O\ 53\ 9 ﬂﬂm ] i ; o I als *[fixe(66) * m is the number of edges in G and G'.
k(G,G') =) count(G, f) - count(&, f) O—\O SO do O—\O =t | . — | S
feF )
with feature domain F, and count(G, f) denoting the frequency of feature f in G. Thus, Theorem
they compute the dot product between explicit feature vectors. Graph filtrations Histogram distance
. . . A L A
Example: Below, features correspond to node degrees where green is degree 1, red . | . | o o S | | | There exgts ° ﬁltraﬁon funchc/m A. such tha.t ?7(G) = ¢7(G) for all WL features
is degree 2. and blue is degree 3. Graph filtrations view graphs at different resolutions. A graph filtration is a  The Graph Filtration kernel compares feature distributions. This comparison is done f € Fwr ifandonly if G and G" are isomorphic.
6 O . nested sequence of subgraphs which describes how a graph is constructed by grad- by computing the optimal transport distance between filtration histograms. Roughly Furthermore, for such a filtration function A, the kernel KZVE is complete, i.e., it can
O/ \ 1xO  -vs-  1xO) G: C|) ually adding sets of edges. speak.ing, the Qpﬁmal tranqurt distance is the minimum cost necessary to trapsform differentiate between all non-isomorphic graphs. it
\O/ = QO  -vs-  2xQO < O Formally, for a weighted graph G = (V, B, w), a filtration A(G) is a sequence one histogram into anpther. Since we vvould.|||<e tq compare feature OCCUrences in a se-
| O - 1xO o/\O quence, the ground distance needs to be 1-dimensional. This ground distance describes
O 1x Vs g o GCGC...CGr=G the cost for shifting mass from one point in the histogram to another.
\U, where sgbgraph G; = (V, B, w) contains only edges exceeding threshold value a;, €. The filtration histogram distance between the feature- f histograms o r(G) and ¢ (G is Experimental evaluation of the WL Filtration kernel
| E; ={e:w(e) > a;}. Thus, filtration function A is determined by values {ag, ..., ax}. given by the optimal transport distance Wa(¢¢(G), ¢+(G")) employing the 1-dimensional
k(G.G') =11+ 32 + 11 ground distance d(o;, o) = oy — a). The Weisfeiler-Lehman Filtration kernel significantly outperforms other graph classifi-

Example: In street maps, it is often useful to consider subgraphs containing only

. o L cation methods on several real-world benchmark datasets.
roads of specific relevance. Such subgraphs highlight crucial infrastructure.
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Optimal transport distance ase kernets o R
80 |- — | .
The optimal transport distance is a distance function between probability distributions Th? hitration histogram distance gives rise to proper kernel functions. This is achieveo o] - % A :
based on the concept of optimal mass transportation. Intuitively speaking, it can be by tran/sformmg the distance meas/ure iNnto a §|m||ar|ty, that}s, a kernel. Such a kernel = | A ; | ! . _ |
viewed as the minimum effort necessary to transform one pile of earth into another. k(G G) compares graphs G and G* w.r.t. their feature distributions of feature f over 5 i Sl Aatiafe ! i
graph filtrations A(G), resp. A(G"). £ s0f : i -
Whereas, the optimal transport distance has cubic complexity in general, its complexity i ” ) | X ol |
s linear for the 1-dimensional ground distance. The ground distance defines the cost for Filtration histograms Unese so-cellzd sase ermels are of e o /
shifting mass from one point to another. ke(Q, Q) = e Wil9:(G).6s(E), 30 | m m | ﬁ *
More formally, for distributions X and Y of equal mass and a ground distance d defin- Graph filtration histograms record the number of feature occurences over filtration + DHFR NCII PTC-MR IMDB.B. EGO-1 EGO-2 EGO-3 EGO-4
iIng pairwise distances between entries of X and Y, the optimal transport distance is graphs. For every feature, a histogram displays the counts of features that appear in , . ,
denoted by Wy(X,Y). each filtration graph. Graph Filtration kernel tFor thefEGQ datase’|tts, filtrations of length at most & = 3 are sufficient to obtain overall
. . . op performing results.
. , _ L . , Formally: Given a graph G together with a length-k filtration A(G) and a feature f, the
Example: Belovv, thg cost fqr mov!ng mass from mdex . to Index j is equ.al to ﬁhelr function ¢}4 - G — R" maps G to its filtration histogram. The final Graph Filtration kernel is a linear combination of base kernels. Each such base
fﬁsolutﬁe d||ﬁ;erence, LZ El(z,]) = .\z —lgyt.hAs the c?iﬁlayeg tradnsport p|a|n |sdophr?a|, kernel is concerned with a single feature f € F. Hence, an aggregation of base kernels 0 A
e optimal transport distance is sim e sum of the red and green colored costs. L . . . : TR - :
P P " Pty 5 Example: The highlighted feature corresponds to vertices with degree one. It is yields a graph similarity over all considered features in . 2 g | 7 :
' I_l \ counted across all filtration graphs. This information is stored in a histogram. The Filtration Graph kernel is defined as 8 A
(74: (7:.: C’j: A §
BERS (X.Y) 5>-0 D0 O-0 _ : KZ(G,G) = 3 B3%/(G.G). o +
Wy (XY | c N ¢ [N fer = —RGO-1
mov:. ;l / z.:n'te 1 - O — O = O = ﬂ . 55 |- —— EGO-2
- O O O— 1 2 3+ Details: Computing the optimal transport distance requires equal mass of histograms. Thus, — EGO-3
Y: -2 1x44|3-2(x41=2 N . : — EGO-4
- 4 a mass-normalisation is necessary as a first step. This, however, results in a loss of feature =0 | \ \ \ | | | | -
_] ] frequency information. In order to “reverse” this disadvantage, each k (G, G') is weighted by o294 . o T s 0
EREREN the original histogram masses 8 = ||¢¢(G)||1 and B' = ||¢+(G")||:.
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