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Background

What are graph kernels?

Graph kernels are funcধons defining similariধes between graphs. They allow for applica-

ধons of machine learning methods such as Support Vector Machines. One of the most

successful graph classificaধon methods relies on graph kernels.

Graph classificaধon task: Which class should the gray graph be assigned to?

Traditional graph kernels

The majority of tradiধonal graph kernels are based on Haussler’s R-convoluধon kernel

and define graph similarity by comparing counts of mutual features. They are of the form

k(G, G′) =
∑
f∈F

count(G, f ) · count(G′, f )

with feature domain F , and count(G, f ) denoধng the frequency of feature f in G. Thus,

they compute the dot product between explicit feature vectors.

Example: Below, features correspond to node degrees where green is degree 1, red

is degree 2, and blue is degree 3.

Optimal transport distance

The opধmal transport distance is a distance funcধon between probability distribuধons

based on the concept of opধmal mass transportaধon. Intuiধvely speaking, it can be

viewed as the minimum effort necessary to transform one pile of earth into another.

Whereas, the opধmal transport distance has cubic complexity in general, its complexity

is linear for the 1-dimensional ground distance. The ground distance defines the cost for

shiđing mass from one point to another.

More formally, for distribuধons X and Y of equal mass and a ground distance d defin-

ing pairwise distances between entries of X and Y , the opধmal transport distance is

denoted by Wd(X, Y ).

Example: Below, the cost for moving mass from index i to index j is equal to their

absolute difference, i.e., d(i, j) = |i − j|. As the displayed transport plan is opধmal,

the opধmal transport distance is simply the sum of the red and green colored costs.

The Graph Filtration kernel - A concept overview

The Graph Filtraধon kernel is a graph similarity measure which considers graphs at mulধple granulariধes. This is achieved by comparing feature
occurrence distribuধons over sequences of such graph resoluধons.

From graph filtraধons to kernels:
Graph filtraধons

We view graphs at in-

creasing resoluধon levels

by considering only sub-

sets of all edges accord-

ing to their relevance.

Filtraধon histograms

The number of feature oc-

curences over the course of

filtraধon sequences is tracked

and expressed in form of fea-

ture distribuধon histograms.

Histogram distance

For each feature, the

feature distribuধon his-

tograms are compared

using opধmal transport

concepts.

Base kernels

The histogram distance is

“transformed” into a kernel

funcধon which compares

graphs w.r.t. a specific fea-

ture.

Graph Filtraধon kernel

The Filtraধon Graph kernel

is a linear combinaধon of

base kernels. It compares

graphs based on different

resoluধons of graphs.

Example:

Graph filtrations

Graph filtraধons view graphs at different resoluধons. A graph filtraধon is a

nested sequence of subgraphs which describes how a graph is constructed by grad-

ually adding sets of edges.

Formally, for a weighted graph G = (V, E, w), a filtraধon A(G) is a sequence
G1 ⊆ G2 ⊆ . . . ⊆ Gk = G

where subgraph Gi = (V, Ei, w) contains only edges exceeding threshold value αi, i.e.,

Ei = {e : w(e) ≥ αi}. Thus, filtraধon funcধon A is determined by values {α1, . . . , αk}.

Example: In street maps, it is ođen useful to consider subgraphs containing only

roads of specific relevance. Such subgraphs highlight crucial infrastructure.

Filtration histograms

Graph filtraধon histograms record the number of feature occurences over filtraধon

graphs. For every feature, a histogram displays the counts of features that appear in

each filtraধon graph.

Formally: Given a graph G together with a length-k filtraধon A(G) and a feature f , the
funcধon φA

f : G → Rk maps G to its filtraࣅon histogram.

Example: The highlighted feature corresponds to verধces with degree one. It is

counted across all filtraধon graphs. This informaধon is stored in a histogram.

Histogram distance

The Graph Filtraধon kernel compares feature distribuধons. This comparison is done

by compuধng the opধmal transport distance between filtraধon histograms. Roughly

speaking, the opধmal transport distance is the minimum cost necessary to transform

one histogram into another. Since we would like to compare feature occurences in a se-

quence, the ground distance needs to be 1-dimensional. This ground distance describes

the cost for shiđing mass from one point in the histogram to another.

The filtraধon histogram distance between the feature-f histograms φf(G) and φf(G′) is
given by the opধmal transport distance Wd(φf(G), φf(G′)) employing the 1-dimensional

ground distance d(αi, αj) = |αi − αj|.

Base kernels

The filtraধon histogram distance gives rise to proper kernel funcধons. This is achieved

by “transforming” the distance measure into a similarity, that is, a kernel. Such a kernel

κf(G, G′) compares graphs G and G′ w.r.t. their feature distribuধons of feature f over

graph filtraধons A(G), resp. A(G′).
These so-called base kernels are of the form

κf(G, G′) = e−γWd(φf(G),φf(G′)).

Graph Filtration kernel

The final Graph Filtraধon kernel is a linear combinaধon of base kernels. Each such base

kernel is concerned with a single feature f ∈ F . Hence, an aggregaধon of base kernels

yields a graph similarity over all considered features in F .

The Filtraধon Graph kernel is defined as

KF
Filt(G, G′) =

∑
f∈F

ββ′κf(G, G′).

Details: Compuࣅng the opࣅmal transport distance requires equal mass of histograms. Thus,

a mass-normalisaࣅon is necessary as a first step. This, however, results in a loss of feature

frequency informaࣅon. In order to “reverse” this disadvantage, each κf(G, G′) is weighted by

the original histogram masses β = ||φf(G)||1 and β′ = ||φf(G′)||1.

TheWeisfeiler-Lehman Filtration kernel

The Weisfeiler-Lehman Filtraধon kernel is an instance of the Graph Filtraধon kernel.

It employs the well-known Weisfeiler-Lehman features and, hence, compares graphs

based on the Weisfeiler-Lehman feature distribuধon over graph filtraধons.

Weisfeiler-Lehman features are generated by an iteraধve node relabeling procedure

which compresses a node’s label and that of its neighbors into a new label.

Theoretical results for theWL Filtration kernel

For the Weisfeiler-Lehman Filtraধon kernel, we show results about its linear complexity

as well as its expressive power.

Theorem

TheWeisfeiler-Lehman filtraধon kernel KFWL

Filt (G, G′) on graphs G, G′ can be computed

in ধme O(hkm), where

h is number of Weisfeiler-Lehman iteraধons,

k is the length of the filtraধon sequence, and

m is the number of edges in G and G′.

Theorem

There exists a filtraধon funcধon A such that φA
f (G) = φA

f (G′) for all WL features

f ∈ FWL if and only if G and G′ are isomorphic.

Furthermore, for such a filtraধon funcধon A, the kernel KFWL

Filt is complete, i.e., it can

differenধate between all non-isomorphic graphs.

Experimental evaluation of theWL Filtration kernel

The Weisfeiler-Lehman Filtraধon kernel significantly outperforms other graph classifi-

caধon methods on several real-world benchmark datasets.
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For the EGO datasets, filtraধons of length at most k = 3 are sufficient to obtain overall

top performing results.
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