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Practical Problem
Ligand Affinity Prediction with Multi-Pattern Kernels
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• small molecules
(ligands) bind to
proteins

• protein ligand binding
triggers many
biochemical processes

• ⇒ starting point for
drug discovery and
design

• strength of bond
characterized via
real-valued affinity
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Ligand-Based Virtual Screening
Ligand Affinity Prediction with Multi-Pattern Kernels
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• Affinity values can be
determined practically

• This process is still time- and
cost-intensive
⇒ We want to predict unknown
affinities with machine learning
tools!
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Molecular Graphs
Ligand Affinity Prediction with Multi-Pattern Kernels
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• Ligands can be represented as
labeled undirected graphs

• Vertices correspond to atoms,
edges to bonds

• Vertex labels: C, O, H, N, S, ...
• Edge labels: single, double,
aromatic bond
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How to Learn From Graphs?
Ligand Affinity Prediction with Multi-Pattern Kernels

• Graphs are nice data structures
– they capture a lot of information about chemical molecules

• But how can we access the contained information with machine
learning algorithms?

– by finding a feature representation for each graph
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Fingerprints: the State of the Art
Ligand Affinity Prediction with Multi-Pattern Kernels

• Different publicly available or commercial feature representations
for small molecules exist, so-called molecular fingerprints

– Structural and/or physico-chemical information
– Binary, counting, or, real-valued format
– MACCS Keys: 166 binary molecular features
ECFP Fingerprints: binary subtree patterns
Graph Kernel Features: (soon)

• State-of-the-art for ligand affinity prediction:
support vector regression (SVR) using one of the available molecular
fingerprints
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Our Contribution
Ligand Affinity Prediction with Multi-Pattern Kernels

• Question: Can we take profit from the diversity of these descriptors
and how?

• Idea: Instead of choosing one descriptor in an expensive procedure
we use several of them in a clever way

• We show that affinity prediction benefits from supervised multi-view
machine learning approaches
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Graph Kernel Features – Two Examples
Ligand Affinity Prediction with Multi-Pattern Kernels

• Cyclic Patterns:
– All simple cycles in the
graph

• Tree Patterns:
– Remaining trees after
edges of cycles have
been removed

...up to isomorphism
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Graph Kernel Features – Weisfeiler-Lehman Labeling
Ligand Affinity Prediction with Multi-Pattern Kernels

Runs in iterations
• Vertices get relabeled
based on their own and
their neighbors labels

• A compression step is
applied

We can combine WL and the
previous graph kernel fea-
tures
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Combinatorial Explosion
Ligand Affinity Prediction with Multi-Pattern Kernels

• We now have available
– Cyclic patterns (C)
– Tree patterns (T )
– Shortest path patterns (P)
– Vertex label patterns (L)

each for several iterations of the Weisfeiler-Lehman labeling
• This gives us 24h possible ways of selecting a combination of these
fingerprints for h iterations

• For only 2 iterations of WL, this results in 65536 possible combined
fingerprints...
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Approach (1/3): Weighted Concatenation of Views
Ligand Affinity Prediction with Multi-Pattern Kernels

• We consider multiple feature representations of molecular graphs
• The novel fingerprint should be a weighted concatenation of the
single views

• In our setting, the view represents one of the pattern classes C, T ,
P, or, L defined above for some WL iteration h
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Approach (2/3): Multi-Pattern Kernel
Ligand Affinity Prediction with Multi-Pattern Kernels

• The linear approach can be generalized to kernel functions
kv : G × G → R and corresponding feature spaces (representer
theorem)

• We define the multi-pattern kernel for some h ∈ N

kMPK(G,G′) =
h∑
i=0

∑
v∈{C,T ,P,L}

bvi · kv(Gi,G′i) , bvi ∈ R

for Gi,G′i being the Weisfeiler-Lehman labeled graphs of depth i
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Approach (3/3): Multi-View Learning
Ligand Affinity Prediction with Multi-Pattern Kernels

Simultaneous calculation of functions f1, . . . , fM and linear coefficients
b = (b1, . . . ,bM) via multi-view learning (MVL) utilizing training examples
(x1,y1), . . . , (xn,yn) with
• ε-insensitive loss: Multiple Kernel Learning (MKL)

argmin
fv,bv≥0

1
2

M∑
v=1
‖fv‖2 + C

n∑
i=1

max{0, |f (xi)− yi| − ε}+ Λ
2‖b‖

2
p]

• squared loss: Learning Kernel Ridge Regression (LKRR)

argmin
fv,bv≥0

M∑
v=1
‖fv‖2 + C

n∑
i=1
|f (xi)− yi|2 , s.t.‖b− b0‖ ≤ Λ
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Datasets
Ligand Affinity Prediction with Multi-Pattern Kernels

• 20 datasets, each corresponds to a human protein
• each set comprises of 90 to 986 ligands with affinity annotations for
the respective protein (pKd-values)

• representation formats for ligands
– standard molecular fingerprints MACCS and ECFP6
– all graph pattern feature representations C, T ,P, and, L
... based on all Weisfeiler-Lehman iterations i ∈ {0, . . . ,6}
... in binary and counting version
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Experimental Settings
Ligand Affinity Prediction with Multi-Pattern Kernels

We investigate the ε-insensitive and squared loss scenario for regression

ε-insensitive loss:
• single-view baseline: SVR
• multi-view approach: MKL
• SMO-MKL software

squared loss:
• single-view baseline: RLSR
• multi-view approach: LKRR
• own implementation

Preliminary experiments: using the single-view approaches we search
for optimal WL depths of cumulative and non-cumulative pattern feature
vectors

Main experiments: we compare single-view baselines applying standard
fingerprints and graph kernels with multi-view approaches for optimal
WL depths from the preliminary experiments
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Preliminary Experiments
Ligand Affinity Prediction with Multi-Pattern Kernels

SVR and RLSR results for the counting version
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Main Experiments
Ligand Affinity Prediction with Multi-Pattern Kernels

MKL and LKRR results for the counting version



Pascal Welke – DS 2016 18/18

Conclusion
Ligand Affinity Prediction with Multi-Pattern Kernels

• We described a way to leverage the variety of available molecular
fingerprints for ligand affinity prediction

– profit from different information
– while managing the combinatorial complexity

• As a result, we found that a combination of fingerprints outperform
single view methods


