
Differentiating Smartphone Users by App Usage
Pascal Welke

University of Bonn
welke@uni-bonn.de

Ionut Andone

University of Bonn
andone@cs.uni-bonn.de

Konrad Błaszkiewicz

University of Bonn
blaszkie@cs.uni-bonn.de

Alexander Markowetz

markowetz.de
alex@markowetz.de

ABSTRACT

Tracking users across websites and apps is as desirable to
the marketing industry as it is unalluring to users. The cen-
tral challenge lies in identifying users from the perspective
of different apps/sites. While there are methods to identify
users via technical settings of their phones, these are prone to
countermeasures. Yet, in this paper, we show that it is possi-
ble to differentiate users via their set of used apps, their app
signature. To this end, we investigate the app usage of 46726
participants from the Menthal project. Even limiting our obser-
vation to the 500 globally most frequent apps results in unique
signatures for 99.67% of users. Furthermore, even under this
restriction, the average minimum Hamming distance to the
closest other user is 25.93. Avoiding identification would thus
require a massive change in the behavior of a user. Indeed,
99.4% of all users have unique usage patterns among the top
60 globally used apps. In contrast to previous work, this pa-
per differentiates between users based on behavior instead of
technical parameters. It thus opens an entirely new discussion
regarding privacy.
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INTRODUCTION

Targeted advertisement and surveillance both aim at tracking
as many activities of users as possible. One challenge lies in
identifying a user across different services. There exists a large
industry that tracks user interactions with various platforms
including web pages and applications on smartphones and
sells this information to advertisers.

There are various approaches to tracking users on the web.
Traditional methods use cookies or invisible images. However,
[5] showed in a large empirical study that the information
browsers send to websites is rich enough to identify them
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without the use of cookies. It is thus possible to identify a
user by e.g. browser version, browser extensions, installed
fonts, timezone, etc. Many users do not want to be tracked and
hence try to circumvent some of the fingerprinting techniques
by using dedicated tools such as Ghostery1. More recently,
however, [9] analyzed three commercial browser fingerprint-
ing libraries and showed that they were able to circumvent
many countermeasures.

On smartphones, operating systems such as Android provide
several means to application developers to uniquely identify
phones. The MAC address of Wifi and Bluetooth modules,
as well as the IMEI of the GSM module are unique and can
be accessed by apps with the right permissions. Additionally,
there is a unique “android id” that may only change upon a
factory reset of the phone. Several companies offer services
and frameworks that can be included in apps to provide track-
ing capabilities for targeted advertisement. However, little is
known on the signals that these companies use to identify and
track users. Accessing identifier information (e.g. the IMEI
or Android ID) commonly requires explicit permissions and
consent from the user during app installation. Again, users
who want to avoid tracking on their phones can apply coun-
termeasures. They can e.g. spoof their MAC addresses, block
access to identifiers or parts of the phone’s hardware.

Sadly, this does not suffice to achieve anonymity. Sensors and
information that are freely available to any installed app can
serve as signals that differentiate between different users. In
a rare publication, Bojinov et al. [4] showed that accelerome-
ter imperfections and distortions in the speaker-microphone
system can identify a smartphone. They identified between
12 of 15 and 16 of 17 identical phones correctly playing and
recording a sound for three or more seconds. In a larger exper-
iment they identified 8.3% of 3583 previously seen devices
among some 16000 devices using accelerometer imperfec-
tions. Weiss and Lockhart [11] showed on a study with 70
participants that accelerometer data can be used to predict user
traits such as sex, height and weight.

This investigation does not focus on technical parameters, but
traces actual behavior. We model users as static vectors of
all their used apps during our observation period. Hence, to
change their fingerprint, users would need to change their in-
teraction patterns with the phone significantly, i.e., by using
different apps, not just alter some technical settings. Further-
more, as we trace usage, it would not suffice to just install

1www.ghostery.com









different moments in time and not the full tracking period as a
cumulative set of installed apps.

Initial experiments showed promising results in trying to infer
the gender of users based on used apps. We also try to extend
this to predicting personality traits or user interests.
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