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Example: Co-authorship Networks
Efficient Frequent Subtree Mining Beyond Forests
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A graph G = (V ,E) consists

of a set of vertices V and a

set of edges E connecting pairs

of vertices.

(Pictures taken from the home pages of the authors)
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Example: Chemical Molecules
Efficient Frequent Subtree Mining Beyond Forests

Saccharose Ethanol (commons.wikimedia.org)

commons.wikimedia.org
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How to Learn From Graphs?
Efficient Frequent Subtree Mining Beyond Forests

• Similarity based learning methods
– “close by objects behave similarly”

• Hence: What does “close by” mean if objects are graphs?
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Frequent Subgraph Mining
Efficient Frequent Subtree Mining Beyond Forests

• We would like to learn a suitable similarity
function between graphs from a given
graph database D

• Frequent subgraphs are a reasonable choice
(e.g. Deshpande et al, 2005) to define similarities
in a domain of graphs

Given a dataset of graphs D ⊆ G and an
integer threshold t ≤ |D|

List all connected graphs P ∈ P that
are subgraph isomorphic to at
least t graphs in D.
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integer threshold t ≤ |D|
List all connected graphs P ∈ P that

are subgraph isomorphic to at
least t graphs in D.

D

2-frequent subgraphs of D
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Subgraph Isomorphism
Efficient Frequent Subtree Mining Beyond Forests

Definition
A subgraph isomorphism is an injective mapping

ϕ : V (G1)→ V (G2)

such that

(v1, v2) ∈ E (G1)⇒ (ϕ(v1), ϕ(v2)) ∈ E (G2)
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Subgraph Isomorphism
Efficient Frequent Subtree Mining Beyond Forests

Definition
A subgraph isomorphism is an injective mapping

ϕ : V (G1)→ V (G2)

such that

(v1, v2) ∈ E (G1)⇒ (ϕ(v1), ϕ(v2)) ∈ E (G2)

Deciding whether one exists, is NP-hard.
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FCSM based Similarity Functions
Efficient Frequent Subtree Mining Beyond Forests

• We embed unseen graphs G1,G2 into
the Hamming space {0, 1}F spanned
by the frequent patterns F

• ...and can employ any similarity
function for real valued vector spaces

• This allows to apply e.g. all kernel
methods to graph databases, like
SVMs (Cortes and Vapnik, 1995) etc.
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Problems with FCSM
Efficient Frequent Subtree Mining Beyond Forests

• Software exists, e.g.
– FSG (Kuramochi and Karypis, 2001)
– gSpan (Yan and Han, 2002)
– Gaston (Nijssen and Kok, 2005). . .

• However:

– only works for (very simple) chemical graphs
– explodes on most other datasets

• Computationally Intractable (Horváth et al, 2007)

– previous work deals with this using some
properties of very simple graphs
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Problems with FCSM
Efficient Frequent Subtree Mining Beyond Forests

• Software exists, e.g.
– FSG (Kuramochi and Karypis, 2001)
– gSpan (Yan and Han, 2002)
– Gaston (Nijssen and Kok, 2005). . .

• However:
– only works for (very simple) chemical graphs
– explodes on most other datasets

• Computationally Intractable (Horváth et al, 2007)

– previous work deals with this using some
properties of very simple graphs

⇒ There is no system that can reliably mine frequent subgraphs for arbitrary graph
databases of small to medium sized graphs
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Main Contributions

Efficient Frequent Subtree Mining Beyond Forests
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Main Contributions
Efficient Frequent Subtree Mining Beyond Forests

1. Introduction of a new pattern mining paradigm: probabilistic frequent subtrees
– efficient for arbitrary graph databases
– though incomplete, comparable predictive performance to exact frequent subgraphs

2. Novel results on subtree isomorphism

– boosted probabilistic frequent subtrees
– positive complexity results for exact frequent subtree mining

3. Fast computation of frequent subgraph based similarity functions

– exploitation of partially ordered set structure on frequent patterns



Pascal Welke – Promotionskolloquium 10/31

Main Contributions
Efficient Frequent Subtree Mining Beyond Forests

1. Introduction of a new pattern mining paradigm: probabilistic frequent subtrees
– efficient for arbitrary graph databases
– though incomplete, comparable predictive performance to exact frequent subgraphs

2. Novel results on subtree isomorphism
– boosted probabilistic frequent subtrees
– positive complexity results for exact frequent subtree mining

3. Fast computation of frequent subgraph based similarity functions

– exploitation of partially ordered set structure on frequent patterns



Pascal Welke – Promotionskolloquium 10/31

Main Contributions
Efficient Frequent Subtree Mining Beyond Forests

1. Introduction of a new pattern mining paradigm: probabilistic frequent subtrees
– efficient for arbitrary graph databases
– though incomplete, comparable predictive performance to exact frequent subgraphs

2. Novel results on subtree isomorphism
– boosted probabilistic frequent subtrees
– positive complexity results for exact frequent subtree mining

3. Fast computation of frequent subgraph based similarity functions
– exploitation of partially ordered set structure on frequent patterns



Pascal Welke – Promotionskolloquium 10/31

Main Contributions
Efficient Frequent Subtree Mining Beyond Forests

1. Introduction of a new pattern mining paradigm: probabilistic frequent subtrees
– efficient for arbitrary graph databases
– though incomplete, comparable predictive performance to exact frequent subgraphs

2. Novel results on subtree isomorphism
– boosted probabilistic frequent subtrees
– positive complexity results for exact frequent subtree mining

3. Fast computation of frequent subgraph based similarity functions
– exploitation of partially ordered set structure on frequent patterns

⇒ Resulting in the first theoretically efficient and practically robust system for frequent
subtree mining in arbitrary graph databases
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Related Publications
Efficient Frequent Subtree Mining Beyond Forests

• Pascal Welke, Tamás Horváth, Stefan Wrobel (2019) Probabilistic and exact frequent
subtree mining in graphs beyond forests. Machine Learning Journal

– Pascal Welke, Tamás Horváth, Stefan Wrobel (2015) On the complexity of frequent subtree
mining in very simple structures. Inductive Logic Programming (ILP), Springer LNCS

• Pascal Welke, Tamás Horváth, Stefan Wrobel (2018) Probabilistic frequent subtrees for
efficient graph classification and retrieval. Machine Learning Journal

– Pascal Welke, Tamás Horváth, Stefan Wrobel (2016a) Probabilistic frequent subtree
kernels. New Frontiers in Mining Complex Patterns (NFMCP), Springer LNCS

– Pascal Welke, Tamás Horváth, Stefan Wrobel (2016b) Min-hashing for probabilistic
frequent subtree feature spaces. Discovery Science (DS), Springer LNCS

• Pascal Welke (2017) Simple necessary conditions for the existence of a Hamiltonian path
with applications to cactus graphs. CoRR



Pascal Welke – Promotionskolloquium 12/31

Probabilistic Frequent Subtrees
Part 1.

Efficient Frequent Subtree Mining Beyond Forests
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Probabilistic Frequent Subtree Mining
Efficient Frequent Subtree Mining Beyond Forests

1.

• We simplify our problem by mining only frequent subtrees

– thus far, mining and embedding are still computationally intractable

• We give up the completeness of mining

– by sampling a fixed number of spanning trees for each graph
– ⇒ some frequent subtrees might not be found

D
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Analysis of Probabilistic Frequent Subtree Mining
Efficient Frequent Subtree Mining Beyond Forests

1.

• Sampling of spanning trees maps graphs to forests

• Frequent trees in forest databases can be mined with polynomial delay (Horváth and

Ramon, 2010)

Theorem
Probabilistic Frequent Subtrees can be mined with polynomial delay.

• Does it work in practice?

– ...in feasible time?
– ...as basis for similarity based learning?

Main Trick!
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Experimental Results
Efficient Frequent Subtree Mining Beyond Forests

1.

1.0 1.4 1.8 2.0 3.0 5.010−2

10−1

100

101

102

103

104

105

Expected Edge Factor

T
im

e
[s
]
(l
og

sc
al
e)

50 ER random graphs, about 50 vertices each, freq. threshold = 5

PS k = 1 PS k = 5 PS k = 20 PS k = 50
Gaston Gaston-re FSG

Runtime of Probabilistic Subtrees (PS)

k is the number of sampled spanning trees per graph



Pascal Welke – Promotionskolloquium 15/31

Experimental Results
Efficient Frequent Subtree Mining Beyond Forests

1.

1.0 1.4 1.8 2.0 3.0 5.010−2

10−1

100

101

102

103

104

105

Expected Edge Factor

T
im

e
[s
]
(l
og

sc
al
e)

50 ER random graphs, about 50 vertices each, freq. threshold = 5

PS k = 1 PS k = 5 PS k = 20 PS k = 50
Gaston Gaston-re FSG

Runtime of Probabilistic Subtrees (PS)

k is the number of sampled spanning trees per graph

1.0 1.2 1.4 1.6 1.8
0

20

40

60

80

100

Expected Edge Factor

R
ec
al
l[
%
]

same dataset as on left

PS k = 1 PS k = 5 PS k = 20 PS k = 50

Recall of PS



Pascal Welke – Promotionskolloquium 15/31

Experimental Results
Efficient Frequent Subtree Mining Beyond Forests

1.

MUTAG PTC NCI1 NCI109

60

70

80

90

Dataset

A
U
C
Sc

or
e

PS k = 1 PS k = 5 PS k = 10 PS k = 20
Exact

Classification Quality of Probabilistic Subtree (PS) based Learners



Pascal Welke – Promotionskolloquium 16/31

Wrap Up
Efficient Frequent Subtree Mining Beyond Forests

1.

• We have presented a system that can reliably mine frequent subtrees in arbitrary
graph databases of small to medium sized graphs

– we give up completeness
– ...but it still works well

• – there are up to nn−2 spanning trees in a graph with n vertices (Cayley, 1889)
– our method can efficiently consider only a sample of polynomial size
– ⇒ there is an exponential gap, which might reduce recall
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Boosted Probabilistic Frequent Subtrees
Part 2.

Efficient Frequent Subtree Mining Beyond Forests
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Boosted Probabilistic Frequent Subtrees
Efficient Frequent Subtree Mining Beyond Forests

2.

• Improve the probabilistic subgraph isomorphism algorithm

• Implicitly consider exponentially many spanning trees in polynomial time
– ...by using additional insights into graphs
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Boosted Probabilistic Frequent Subtrees
Efficient Frequent Subtree Mining Beyond Forests

2.

• Improve the probabilistic subgraph isomorphism algorithm
• Implicitly consider exponentially many spanning trees in polynomial time

– ...by using additional insights into graphs

Biconnected Component
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27 spanning trees



Pascal Welke – Promotionskolloquium 18/31

Boosted Probabilistic Frequent Subtrees
Efficient Frequent Subtree Mining Beyond Forests

2.

• Improve the probabilistic subgraph isomorphism algorithm
• Implicitly consider exponentially many spanning trees in polynomial time

– ...by using additional insights into graphs

27 spanning trees



Pascal Welke – Promotionskolloquium 18/31

Boosted Probabilistic Frequent Subtrees
Efficient Frequent Subtree Mining Beyond Forests

2.

• Improve the probabilistic subgraph isomorphism algorithm
• Implicitly consider exponentially many spanning trees in polynomial time

– ...by using additional insights into graphs

Amylopectin
commons.wikimedia.org

commons.wikimedia.org


Pascal Welke – Promotionskolloquium 18/31

Boosted Probabilistic Frequent Subtrees
Efficient Frequent Subtree Mining Beyond Forests

2.

• Improve the probabilistic subgraph isomorphism algorithm
• Implicitly consider exponentially many spanning trees in polynomial time

– ...by using additional insights into graphs

Amylopectin
commons.wikimedia.org

...you already see enough graph for 64 = 936
spanning trees

commons.wikimedia.org
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Boosted Subtree Isomorphism
Efficient Frequent Subtree Mining Beyond Forests

2.

Theorem

Subtree Isomorphism from a tree H into an arbitrary graph G can be solved in time

O
(
f 2
max(G ) · |E (G )| · |V (H)|1.5

)
where fmax(G ) is the maximum number of spanning trees in any graph induced by the
union of biconnected components containing some vertex v ∈ V (G ).

Near optimal for trees G
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2.

Theorem

Subtree Isomorphism from a tree H into an arbitrary graph G can be solved in time

O
(
f 2
max(G ) · |E (G )| · |V (H)|1.5

)
where fmax(G ) is the maximum number of spanning trees in any graph induced by the
union of biconnected components containing some vertex v ∈ V (G ).

fmax(G ) = 6

Near optimal for trees G
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Boosted Probabilistic Frequent Subtree Mining
Efficient Frequent Subtree Mining Beyond Forests

2.

Theorem (Informally)
The Subtree Isomorphism problem can be solved with one-sided error in time

O
(
`2 · |E (G )| · |V (H)|1.5

)
where ` is the maximum number of local spanning trees drawn in certain neighborhoods
of articulation vertices, considering `O(n) global spanning trees.
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The Subtree Isomorphism problem can be solved with one-sided error in time

O
(
`2 · |E (G )| · |V (H)|1.5

)
where ` is the maximum number of local spanning trees drawn in certain neighborhoods
of articulation vertices, considering `O(n) global spanning trees.

This allows to efficiently mine boosted probabilistic frequent subtrees in arbitrary graph
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2.

Input : tree H with |V (H)| > 1 and an arbitrary
connected graph G with |V (G)| ≥ |V (H)|

Output: True if H 4 G ; o/w False

Main:
set C := ∅
pick a vertex r ∈ V (G) and compute the complete
guidance tree T = (T ,S) of G for the tree skeleton
T rooted at r
for all v ∈ V (T ) in a postorder do

// Sv ∈ S is the bag of v in T
for all τ ∈ Sv do

for all w ∈ V (τ) in a postorder do
C := C ∪ Characteristics(v, u, τ,w)
if (Hu

u , τ,w) ∈ C then return True
return False

Characteristics(v, u, τ,w):
Cτ := ∅
for all θ ∈ Θvw (τ) do

for all u ∈ V (H) do
let τ ′ be the tree satisfying θ = τ ∪ τ ′
let Cτ (resp. Cτ′ ) be the set of children of w in τ (resp. τ ′) and
Cθ := Cτ ∪ Cτ′
let B = (Cθ∪̇N (u), E) be the bipartite graph with

cu′ ∈ E if and only if
(c ∈ Cτ ∧ (Hu

u′ , τ, c) ∈ C) ∨ (c ∈ Cτ′ ∧ (Hu
u′ , τ

′, c) ∈ C)

for all cu′ ∈ Cθ ×N (u)
if B has a matching that covers N (u) then

add (Hu
u , τ,w) to Cτ

for all y ∈ N (u) do
if B has a matching covering N (u) \ {y} then

add
(
Hy
u , τ,w

)
to Cτ

return Cτ
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• Probabilistic frequent subtree mining

– we can implicitly sample exponentially many spanning trees in polynomial time
– this increases the recall per time for probabilistic frequent subtree mining in practically

relevant graph databases
• Exact frequent subtree mining for locally easy graphs

– efficient exact frequent subtree mining is possible for a new graph class
– in practice: relevant, as many chemical graphs are contained
– conjecture: we cannot mine frequent trees efficiently beyond locally easy graphs
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Given a set of tree patterns F and a (novel) text graph G

Compute the feature vector for G in F

Solution Same as before: probabilistic embedding operator
⇒ efficient algorithm with one-sided error
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• To reduce the number of calls utilize

– partially ordered set structure on tree patterns
– monotonicity of subgraph isomorphism
– we can further reduce calls by combining this with min-hashing
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Summary
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• Frequent subgraphs are useful features for learning from graphs, but

– mining and embedding are computationally intractable
– other mining software only works for very simple graph databases

• I propose the first theoretically efficient and practically robust system for frequent
subtree mining in arbitrary graph databases

– introduction of (boosted) probabilistic frequent subtrees
– fast computation of embedding vectors in probabilistic frequent subtree feature spaces

• Computational complexity of exact frequent subtree mining

– for locally easy graphs, frequent subtree mining and embedding are computationally
tractable

– we conjecture: this result is close to the border between tractable and intractable
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