
ML2R Theory Nuggets
Centering Data- and Kernel Matrices

Christian Bauckhage∗
Machine Learning Rhine-Ruhr

Fraunhofer IAIS
St. Augustin, Germany

Pascal Welke†
Machine Learning Rhine-Ruhr

University of Bonn
Bonn, Germany

ABSTRACT
We discuss the notion of centered data matrices and show how
to compute them using centering matrices. As centering matrices
have many applications in data science and machine learning, we
have a look at one such application and discuss how they allow for
centering kernel matrices.

1 CENTERING DATA MATRICES
In data mining, machine learning, or pattern recognition, we often
have to analyze or process a sample of 𝑛 data points 𝒙𝑖 ∈ R𝑚 . This,
in turn, frequently requires us to consider zero mean or centered
data.

A simple canonical example of such a setting is the computation
of the𝑚 ×𝑚 (biased) sample covariance matrix

𝑪 =
1
𝑛

𝑛∑︁
𝑖=1

[
𝒙𝑖 − 𝒙

] [
𝒙𝑖 − 𝒙

]⊺ (1)

where the vector

𝒙 =
1
𝑛

𝑛∑︁
𝑖=1

𝒙𝑖 (2)

denotes the sample mean.
While this is a specific example, we note its following general

aspect: The operation of subtracting the sample mean from each of
the given data points

𝒛𝑖 = 𝒙𝑖 − 𝒙 (3)

causes the resulting transformed data 𝒛𝑖 to have the following mean

𝒛 =
1
𝑛

𝑛∑︁
𝑖=1

𝒛𝑖 =
1
𝑛

𝑛∑︁
𝑖=1

[
𝒙𝑖 − 𝒙

]
=

1
𝑛

𝑛∑︁
𝑖=1

𝒙𝑖 −
1
𝑛

𝑛∑︁
𝑖=1

𝒙 = 𝒙 − 1
𝑛
· 𝑛 · 𝒙 = 0 (4)

In other words, the transformation in (3) causes the transformed
data to be “of zero mean” or to be “centered at 0”.

With respect to the sample covariance matrix in our introductory
example, this means that we could also compute it as

𝑪 =
1
𝑛

𝑛∑︁
𝑖=1

𝒛𝑖 𝒛
⊺
𝑖

(5)

∗ 0000-0001-6615-2128
† 0000-0002-2123-3781

What does any of this have to do with data matrices? Well,
we may gather the 𝑛 given data points 𝒙𝑖 ∈ R𝑚 in an𝑚 × 𝑛 data
matrix

𝑿 =
[
𝒙1, 𝒙2, . . . , 𝒙𝑛

]
(6)

and apply linear algebra to facilitate procedures such as the one
we just went through. If we did this, we should hope that there is a
linear algebraic mechanism to produce a centered data matrix

𝒁 =
[
𝒛1, 𝒛2, . . . , 𝒛𝑛

]
(7)

Indeed, linear algebra provides such a mechanism and we next
discuss how it works.

In what follows, we let 1 ∈ R𝑛 denote the 𝑛-dimensional vector
of all ones.

If 𝑛 data points have been gathered in a data matrix 𝑿 , it is an
easy exercise to verify that their sample mean in (2) can also be
computed like this

𝒙 = 1
𝑛 𝑿1 (8)

When working with the vector of all ones, we can moreover
consider the outer product 𝒙 1⊺ to obtain an𝑚 × 𝑛 matrix

𝒙 1⊺ =
[
𝒙, 𝒙, . . . , 𝒙

]
(9)

all of whose columns are copies of 𝒙 .
This matrix now allows us to perform data centering, i.e. to

subtract the sample mean from each of the given data points, by
means of just a single matrix subtraction, namely

𝒁 = 𝑿 − 𝒙 1⊺ (10)

Given what we saw in (4), it is clear that the column mean of
the resulting matrix 𝒁 will be 0. In other words, 𝒁 is a centered
version of our original data matrix 𝑿 . Regarding our introductory
example of the sample covariance matrix, this means that we can
now compute is as

𝑪 = 1
𝑛 𝒁𝒁⊺ (11)

But let us keep going and develop even deeper insights into
data centering! If we plug (8) into (10), we obtain the following
crucial result

𝒁 = 𝑿 − 1
𝑛 𝑿11⊺ = 𝑿

[
𝑰 − 1

𝑛 11⊺
]
≡ 𝑿 𝑱 (12)

Here, 𝑰 denotes the 𝑛 × 𝑛 identity matrix and the matrix

𝑱 = 𝑰 − 1
𝑛 11⊺ (13)

is called a centering matrix because it centers the columns of
matrix 𝑿 at 0.

Centering matrices have a couple of important or convenient
characteristics. For instance, it is easy to show that

https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0001-6615-2128
https://orcid.org/0000-0002-2123-3781
https://orcid.org/0000-0002-2123-3781
https://en.wikipedia.org/wiki/Centering_matrix


C. Bauckhage and P. Welke

(1) 𝑱 is square, i.e. 𝑱 ∈ R𝑛×𝑛
(2) 𝑱 is symmetric, i.e. 𝑱 = 𝑱 ⊺

(3) 𝑱 is idempotent, i.e. 𝑱𝑘 = 𝑱 for all 1 ≤ 𝑘 ∈ N
(4) 𝑱 is positive semi-definite, i.e. 𝒚⊺ 𝑱 𝒚 ⪰ 0 for all 𝒚 ∈ R𝑛
(5) 𝑱 is singular, i.e. not invertible, i.e. 𝑱−1 does not exists
(6) because of (4), all eigenvalues of 𝑱 are non-negative
(7) because of (3), all eigenvalues of 𝑱 are either 0 or 1
(8) because of (2) and (3), 𝑱 is an orthogonal projection matrix
(9) the trace of 𝑱 amounts to

tr
[
𝑱
]
= 𝑛 ·

(
1 − 1

𝑛

)
= 𝑛 − 1

Regarding our introductory example of computing the sample
covariance matrix, we can make use of some of the above properties
to obtain

𝑪 = 1
𝑛 𝒁𝒁⊺ (14)

= 1
𝑛

[
𝑿 𝑱

] [
𝑿 𝑱

]⊺ (15)

= 1
𝑛 𝑿 𝑱 𝑱 ⊺𝑿⊺ (16)

= 1
𝑛 𝑿 𝑱 𝑱 𝑿⊺ (17)

= 1
𝑛 𝑿 𝑱 𝑿⊺ (18)

Since this result may look curious at first sight, we will briefly
verify it from a different point of view.

If we expand the outer products in the summation in (1), we
obtain the following fairly well known decomposition of the sample
covariance matrix

𝑪 =
1
𝑛

𝑛∑︁
𝑖=1

𝒙𝑖𝒙
⊺
𝑖
− 2
𝑛

𝑛∑︁
𝑖=1

𝒙𝑖𝒙
⊺ + 1

𝑛

𝑛∑︁
𝑖=1

𝒙𝒙⊺ (19)

=
1
𝑛
𝑿𝑿⊺ − 2 𝒙𝒙⊺ + 𝒙𝒙⊺ (20)

=
1
𝑛
𝑿𝑿⊺ − 𝒙𝒙⊺ (21)

If we next plug (8) into this expression, we realize that the sample
covariance matrix can also be written as

𝑪 = 1
𝑛 𝑿𝑿⊺ − 1

𝑛2

[
𝑿1

] [
𝑿1

]⊺ (22)

= 1
𝑛 𝑿𝑿⊺ − 1

𝑛2 𝑿 11⊺𝑿⊺ (23)

= 1
𝑛 𝑿

[
𝑿⊺ − 1

𝑛 11
⊺𝑿⊺

]
(24)

= 1
𝑛 𝑿

[
𝑰 − 1

𝑛 11
⊺] 𝑿⊺ (25)

= 1
𝑛 𝑿 𝑱 𝑿⊺ (26)

which does indeed corroborate the result in (18).

2 CENTERING KERNEL MATRICES
Many algorithms for data mining, machine learning, and pattern
recognition work with Gram matrices

𝑮 = 𝑿⊺𝑿 (27)

which are matrices whose elements are given by [𝑮]𝑖 𝑗 = 𝒙
⊺
𝑖
𝒙 𝑗

and thus only depend on inner products between given data points.
This allows for invoking the kernel trick where we replace inner
products by evaluations of a Mercer kernel

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
=
〈
𝝋𝑖

�� 𝝋 𝑗

〉
(28)

Here, 𝝋𝑖 ≡ 𝝋 (𝒙𝑖 ) where 𝝋 : R𝑚 → H is some generally unknown
transformation from the data space into a potentially infinite di-
mensional feature space. The function ⟨· | ·⟩ : H × H→ R denotes
the inner product in that feature space.

To stress the whole point of our following discussion, we remark
that it sounds formidable to work with unknown transformations
into potentially infinite dimensional spaces. Recall, however, that
we only do this implicitly when using explicitly given kernel func-
tions. In other words, while it may be impossible to practically
compute the inner product on the right of equation (28), it is usu-
ally possible to evaluate the kernel function on its left hand side.

With respect to Gram matrices, this is to say that invoking the
kernel trick is to replace the 𝑛 × 𝑛 matrix 𝑮 by an 𝑛 × 𝑛 kernel
matrix 𝑲 where[

𝑲
]
𝑖 𝑗

= 𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
(29)

Conceptually, or from the point of view of “pen-and-paper math”,
this is the same as introducing a feature space data matrix

𝚽 =

[
𝝋1, 𝝋2, . . . , 𝝋𝑛

]
(30)

and then replacing 𝑮 by an 𝑛 × 𝑛 matrix 𝚽⊺𝚽 where[
𝚽
⊺
𝚽

]
𝑖 𝑗

=
〈
𝝋𝑖

�� 𝝋 𝑗

〉
(31)

Now, if we kernelize an algorithm that requires us to work with
centered data 𝒛𝑖 = 𝒙𝑖 − 𝒙 ∈ R𝑚 , we must make sure that their
feature space representations 𝝍𝑖 = 𝝋𝑖 − 𝝋̄ ∈ H are centered, too.

Again, this sounds formidable, because we just emphasized that
it may be practically impossible to compute the underlying trans-
formations. How are we then supposed to compute the feature
space mean required for feature space centering? But let us do
some “pen-and-paper math” to see what we are actually dealing
with.

On a conceptual or symbolic level, we can easily work with the
feature space data matrix 𝚽 in (30). Our insights form the previous
section then tell us that

𝚿 = 𝚽 𝑱 = 𝚽 − 1
𝑛 𝚽11⊺ (32)

will be a centered matrix. However, if we cannot even write com-
puter code to compute 𝚽, we certainly cannot write computer code
to center it. Yet, what we are actually interested in when kernelizing
an algorithm is to compute the Gramian 𝚿

⊺
𝚿 and we will see next

that this is practically feasible.

https://en.wikipedia.org/wiki/Kernel_method


Centering Data- and Kernel Matrices

In fact, this is easy to see: Using the definition in (32) together
with general properties of the centering matrix 𝑱 , we have

𝚿
⊺
𝚿 =

[
𝚽 𝑱

]⊺ [
𝚽 𝑱

]
(33)

= 𝑱 ⊺𝚽⊺𝚽 𝑱 (34)

= 𝑱 𝚽⊺𝚽 𝑱 (35)

At this point, we note that it is actually possible to compute the
entries of the feature space Gramian 𝚽

⊺
𝚽, because[

𝚽
⊺
𝚽

]
𝑖 𝑗

=
〈
𝝋𝑖

�� 𝝋 𝑗

〉
= 𝐾

(
𝒙𝑖 , 𝒙 𝑗

)
=
[
𝑲
]
𝑖 𝑗

(36)

In other words, we may not be able to practically compute matrix 𝚽
but we are able to compute𝚽⊺𝚽 because its entries can be obtained
by evaluating a computable kernel function. All in all, we therefore
have the crucial result that

𝚿
⊺
𝚿 = 𝑱 𝑲 𝑱 (37)

At this point, we have successfully shown that it is feasible to
practically compute (and therefore work with) matrix 𝚿

⊺
𝚿. But

let us once again keep going and develop deeper insights into
what it means to center a kernel matrix.

To begin with, we emphasize, that we have an equation that
relates the kernel matrix 𝑲 to the feature space data matrix 𝚽,
namely

𝑲 = 𝚽
⊺
𝚽 (38)

Given that we can compute 𝚿
⊺
𝚿 for the centered feature space

data matrix 𝚿, we now define

𝑲𝑐 = 𝚿
⊺
𝚿 (39)

and henceforth call 𝑲𝑐 the centered kernel matrix.
Concerning the centered kernel matrix, we observe the following

𝑲𝑐 = 𝑱 𝑲 𝑱 (40)

=
[
𝑰 − 1

𝑛 11⊺
]
𝑲

[
𝑰 − 1

𝑛 11⊺
]

(41)

=
[
𝑲 − 1

𝑛 11⊺𝑲
] [

𝑰 − 1
𝑛 11⊺

]
(42)

= 𝑲 − 1
𝑛 11⊺𝑲 − 1

𝑛 𝑲11⊺ + 1
𝑛2 11

⊺𝑲 11⊺ (43)

While this looks interesting, we may again wonder if there is an
intuition behind this expression?

To develop a better understanding of the nature of matrix 𝑲𝑐 ,
we next study its individual entries [𝑲𝑐 ]𝑖 𝑗 .

Just as we can conceptually work with the feature space data
matrix 𝚽, we can conceptually work with the feature space sample
mean

𝝋̄ =
1
𝑛
𝚽 1 =

1
𝑛

𝑛∑︁
𝑖=1

𝝋𝑖 (44)

Using this feature space sample mean, we can write the individual
entries of 𝑲𝑐 as[

𝑲𝑐
]
𝑖 𝑗

=
[
𝚿
⊺
𝚿

]
𝑖 𝑗

=
〈
𝝍𝑖

�� 𝝍 𝑗

〉
=
〈
𝝋𝑖 − 𝝋̄

�� 𝝋 𝑗 − 𝝋̄
〉

(45)

And, if we expand these inner products between two centered
feature space points, we obtain〈

𝝋𝑖 − 𝝋̄
�� 𝝋 𝑗 − 𝝋̄

〉
=
〈
𝝋𝑖

�� 𝝋 𝑗

〉
−
〈
𝝋𝑖

�� 𝝋̄〉
−
〈
𝝋̄
�� 𝝋 𝑗

〉
+
〈
𝝋̄
�� 𝝋̄〉 (46)

Using the definition of the feature space sample mean in (44)
and the bilinearity of the inner product, this can also be written as〈

𝝋𝑖 − 𝝋̄
�� 𝝋 𝑗 − 𝝋̄

〉
=
〈
𝝋𝑖

�� 𝝋 𝑗

〉
− 1

𝑛

𝑛∑︁
𝑗=1

〈
𝝋𝑖

�� 𝝋 𝑗

〉
− 1

𝑛

𝑛∑︁
𝑖=1

〈
𝝋𝑖

�� 𝝋 𝑗

〉
+ 1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

〈
𝝋𝑖

�� 𝝋 𝑗

〉
(47)

Given this expansion, we can now resort to (28) and write all
the inner products on the right hand side of (47) in terms of kernel
functions〈

𝝋𝑖 − 𝝋̄
�� 𝝋 𝑗 − 𝝋̄

〉
= 𝐾

(
𝒙𝑖 , 𝒙 𝑗

)
− 1

𝑛

𝑛∑︁
𝑗=1

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
− 1

𝑛

𝑛∑︁
𝑖=1

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
+ 1

𝑛2

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
(48)

At this point, we observe that all terms on the right of (48) can
be expressed in terms of our original kernel matrix 𝑲 . In particular,
we have

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
= 𝒆
⊺
𝑖
𝑲 𝒆 𝑗 (49)

𝑛∑︁
𝑗=1

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
= 𝒆
⊺
𝑖
𝑲 1 (50)

𝑛∑︁
𝑖=1

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
= 1⊺𝑲 𝒆 𝑗 (51)

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝐾
(
𝒙𝑖 , 𝒙 𝑗

)
= 1⊺𝑲 1 (52)

where 𝒆𝑖 , 𝒆 𝑗 ∈ R𝑛 denote the 𝑖-th and 𝑗-th standard basis vector.
But this is to say that we can express the (𝑖, 𝑗) entry of the centered
kernel matrix as[

𝑲𝑐
]
𝑖 𝑗

= 𝒆
⊺
𝑖
𝑲𝒆 𝑗 − 1

𝑛 𝒆
⊺
𝑖
𝑲1 − 1

𝑛 1
⊺𝑲𝒆 𝑗 + 1

𝑛2 1
⊺𝑲1 (53)

Since this is beginning to resemble the expression in (43), we
further note the following: The expression in (49) is but the (𝑖, 𝑗)
entry of 𝑲 . The expression (50) is the 𝑖-th component of a column
vector, namely 𝑲 1. The expression in (51) is the 𝑗-th component
of a row vector, namely 1⊺𝑲 . And 1⊺𝑲 1 is a scalar. Turning these
latter objects into 𝑛 × 𝑛 matrices can be accomplished like this:
𝑲 11⊺ , 11⊺𝑲 , and 1⊺𝑲 111⊺ = 11⊺𝑲 11⊺ . Using these matrices,
we therefore have

𝑲𝑐 = 𝑲 − 1
𝑛 𝑲 11⊺ − 1

𝑛 11⊺𝑲 + 1
𝑛2 11

⊺𝑲 11⊺ (54)

which corresponds exactly to the result we found in equation (43).



C. Bauckhage and P. Welke

3 SUMMARY OF MAIN RESULTS
In data mining, pattern recognition, and machine learning, we often
work with data matrices

𝑿 =
[
𝒙1, 𝒙2, . . . , 𝒙𝑛

]
whose 𝑛 columns vectors 𝒙𝑖 have a mean of 𝒙 . For many tasks,
however, we need to turn such data matrices into centered data
matrices

𝒁 =
[
𝒛1, 𝒛2, . . . , 𝒛𝑛

]
whose 𝑛 columns vectors 𝒛𝑖 = 𝒙𝑖 −𝒙 have a mean of 0. Considering
the centering matrix

𝑱 = 𝑰 − 1
𝑛 11⊺

we can compute the centered version 𝒁 of data matrix 𝑿 as follows

𝒁 = 𝑿𝑱

The “outer product” of a centered matrix 𝒁 = 𝑿𝑱 with itself can
be computed in terms of the original matrix 𝑿 , namely

𝒁𝒁⊺ =
[
𝑿 𝑱

] [
𝑿 𝑱

]⊺
= 𝑿 𝑱 𝑱 ⊺𝑿⊺

= 𝑿 𝑱 𝑱 𝑿⊺

= 𝑿 𝑱 𝑿⊺

This uses the fact that the centering matrix 𝑱 is symmetric and
idempotent.

The “inner product” of a centered matrix 𝒁 = 𝑿𝑱 with itself can
also be computed in terms of the original matrix 𝑿 , namely

𝒁⊺𝒁 =
[
𝑿 𝑱

]⊺ [
𝑿 𝑱

]
= 𝑱 ⊺𝑿⊺𝑿 𝑱

= 𝑱 𝑿⊺𝑿 𝑱

This again uses the symmetry of the centering matrix 𝑱 .
When working with algorithms that involve computations with

Gram matrices 𝑿⊺𝑿 , we can invoke the kernel trick and replace
the Gramian by a kernel matrix 𝑲 . The corresponding centered
kernel matrix is given by

𝑲𝑐 = 𝑱 𝑲 𝑱

4 A SHORT NOTE ON IMPLEMENTATION
As it is customary for this series to provide simple NumPy im-
plementations of the proposed methods, we will do just that. A
centering matrix for 𝑛 data points can be obtained with
import numpy as np

def get_centering_matrix(n):
return np.eye(n) - 1. / n * np.ones([n,1])

While this seems like a straightforward implementation of (13)
at first glance, we note one slight difference: NumPy allows for so
called broadcasting of the vector np.ones([1,n]) implementing 1
to np.eye(n) implementing the 𝑛 × 𝑛 matrix 𝑰 if the dimensions
are compatible. This allows to implement (13) without explicitly
creating an 𝑛×𝑛 matrix filled with ones, which becomes very useful
for larger problem instances.

5 OUTLOOK TO APPLICATION EXAMPLES
As we saw in our introductory example, centered data matrices
play a crucial role in computing sample covariance matrices. They
are thus important for methods such as PCA [7] or CCA [10] which
build on top of covariance matrices. But centered data matrices
occur in other contexts, too. For instance, they may form the basis
of simple yet efficient clustering algorithms [1, 2].

Centered Gram- or kernel matrices play crucial roles in multidi-
mensional scaling [8] or kernel PCA [9]. Especially the latter allows
for interesting approaches to text analysis [3–6] which we discuss
in our ML2R Coding Nuggets series.

ACKNOWLEDGMENTS
This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01IS18038C). The authors gratefully acknowledge this support.

REFERENCES
[1] C. Bauckhage, E. Brito, K. Cvejoski, C. Ojeda, R. Sifa, and S. Wrobel. 2017. Ising

Models for Binary Clustering via Adiabatic Quantum Computing. In Proc. EMM-
CVPR. Springer.

[2] C. Bauckhage, C. Ojeda, R. Sifa, and S. Wrobel. 2018. Adiabatic Quantum Com-
puting for Kernel k=2 Means Clustering. In Proc. KDML-LWDA.

[3] M. Beeksma, M. van Gompel, F. Kunneman, L. Onrust, B. Regnerus, D. Vinke,
E. Brito, C. Bauckhage, and R. Sifa. 2018. Detecting and Correcting Spelling
Errors in High-quality Dutch Wikipedia Text. Computational Linguistics in the
Netherlands J. 8 (2018), 122–137.

[4] E. Brito, B. Georgiev, D. Domingo-Fernandez, C.T. Hoyt, and C. Bauckhage.
2019. RatVec: A General Approach for Low-dimensional Distributed Vector
Representations via Rational Kernels. In Proc. KDML-LWDA.

[5] E. Brito, R. Sifa, and C. Bauckhage. 2017. KPCA Embeddings: An Unsupervised
Approach to Learn Vector Representations of Finite Domain Sequences. In Proc.
KDML-LWDA.

[6] V. Gupta, S. Giesselbach, S. Rüping, and C. Bauckhage. 2019. Improving Word
Embeddings Using Kernel PCA. In Proc. Workshop on Representation Learning for
NLP @ ACL.

[7] I.T. Jolliffe. 1986. Principal Component Analysis. Springer.
[8] J.B. Kruskal and M. Wish. 1978. Multidimensional Scaling. SAGE Publications.
[9] B. Schölkopf, A. Smola, and K.-R. Müller. 1998. Nonlinear Component Analysis

as a Kernel Eigenvalue Problem. Neural Computation 10 (1998).
[10] B. Thompson. 1985. Canonical Correlation Analysis. SAGE Publications.

https://www.ml2r.de

	Abstract
	1 Centering Data Matrices
	2 Centering Kernel Matrices
	3 Summary of Main Results
	4 A Short Note on Implementation
	5 Outlook to Application Examples
	References

