ML2R Theory Nuggets
Computational Complexity of Max-Sum Diversification

Pascal Welke
Machine Learning Rhine-Ruhr
University of Bonn
Bonn, Germany

ABSTRACT

We show how max-sum diversification can be used to solve the k-
clique problem, a well-known NP-complete problem. This reduction
proves that max-sum diversification is NP-hard and provides a
simple and practical method to find cliques of a given size using
Hopfield networks.

1 INTRODUCTION

In a recent coding nugget, Bauckhage et al. [2] have stated that
the max-sum diversification problem is NP-hard. Rather than to
solve the max-sum diversification problem exactly, they instead
resorted to using Hopfield networks in order to find an approximate
solution.

In this “theory nugget”, we provide some background on this
issue: Are Bauckhage et al. just too lazy to come up with an exact
solution or do they simply apply Hopfield networks no matter the
problem? To demonstrate that the answer is no tt both questions,
we first elaborate on what it means for a problem to be NP-hard or
NP-complete.

NP-hardness, for short means that some problem is at least as
difficult to solve as any problem in the complexity class NP. This
class contains all decision problems whose solutions can be verified
in polynomial time but it is unknown if there exist polynomial
time algorithms to solve all problems in NP (the so called P vs. NP
problem). So how can we provide proof that a problem is as hard
as any of the infinite number of problems in NP?

We employ an idea that long-time readers of this series should
be well aware of: Showing how to solve a given problem A using
tools developed for another problem B. For this, we require that
the transformation from problem A into problem B can be done in
polynomial time in the size of the input data. The added twist is
that if we can solve an NP-complete problem with tools for other
problems, then we can solve all problems in the class NP with these
tools. Therefore, it suffices to find a polynomial time transformation
for a single, selected NP-complete problem using tools for another
problem, to show that the latter is NP-hard, i.e. as hard to solve as
any problem in NP.

In particular, we will show a polynomial time reduction from
the well-known NP-complete k-clique-problem [3] to max-sum
diversification. Briefly speaking, we provide a way to solve the
k-clique-problem by solving a max-sum diversification problem.

Our reduction is constructive and results in a simple way to find
cliques of arbitrary size in a given graph using Hopfield networks,
as discussed in Bauckhage et al. [2]. Readers who would like to
experiment with our code should be passingly familiar with NumPy
and only need to

Till Hendrik Schulz
Machine Learning Rhine-Ruhr
University of Bonn
Bonn, Germany

Christian Bauckhage
Machine Learning Rhine-Ruhr
Fraunhofer IAIS

St. Augustin, Germany

Figure 1: A random graph and a clique of size four in said
graph.

import numpy as np
import numpy.random as rnd

1.1 Notions

Let us quickly recall the necessary notions: A graph G consists of
a set of vertices V(G) and a set of edges E(G), connecting pairs
of vertices. An example of a graph is given on the left of Figure 1,
where vertices are drawn as points and edges are drawn as lines. A
clique of size k (or a k-clique for short) is a subset C of the vertices
of G with |C| = k such that each pair of vertices in C is connected
by an edge. Figure 1 shows a 4-clique in yellow on the right. The
k-clique problem is then to decide, given a graph G and an integer
k whether there exists a k-clique in G. This problem was among
the first 21 problems to be identified as being NP-complete [5] and
has since eluded an efficient (i.e. polynomial time) algorithm.

Also recall the max-sum diversification problem: Given some
set X = {x1,...,x,} and an appropriate distance measure d(-,),
determine a subset S C X of size |S| = k' < n of maximum
dispersion. In other words, solve

> d(xix;)

S* = argmax

Scx xi€Sx;eS (1)
s.t. |S| = K.
2 THEORY

Before showing how we can transform the k-clique problem to
max-sum diversification, we will take a brief look at the complexity
classes that are relevant for our endeavor. We will also define some
requirements for our transformation .

2.1 NP-completeness and NP-hardness

These two complexity classes were introduced to formally be able
to say “My problem A here is at least as hard as your problem B
there” by showing that we can use an algorithm for A to solve

https://orcid.org/0000-0002-2123-3781
https://orcid.org/0000-0003-3163-325X
https://orcid.org/0000-0001-6615-2128

B with some bounded additional effort. We shall formalize “some
additional effort” as a transformation of any instance of problem A
to an instance of problem B, that can be done in time and space that
is polynomial in the input size. In particular, we allow some prepro-
cessing, followed by one or more applications of an algorithm for
problem B, and some postprocessing to transform the output of the
application(s) to an answer to our original problem A. We require
the preprocessing and postprocessing steps to take polynomial time,
and require that the transformation calls the algorithm for problem
B only a polynomial number of times.

Looking at the example that is the topic of this brief article, we
need to transform an instance of a k-clique problem, that consists
of a graph G and some integer k to an instance of the max-sum
diversification problem, i.e., some set X, a distance measure d, and
some integer k’, and need to show how to answer the k-clique
problem using a solution to our max-sum diversification problem.

Definition 2.1. A decision problem # € NP is NP-complete if any
problem in NP can be polynomially reduced! to P.

More generally, a (not necessarily decision) problem ¥ is NP-
hard if any problem in NP can be polynomially transformed (as
above) to P. Note that we have dropped two restrictions here: First,
we don’t require P to belong to the class NP any more. Second, we
don’t even require # to be a decision problem.

Note that applying a polynomial time algorithm a constant or
even polynomial number of times results in a polynomial time algo-
rithm. Hence, if any problem in NP transforms in polynomial time
to a NP-complete problem and we give a polynomial transformation
from an NP-complete problem to our problem at hand, then every
problem in NP transforms in polynomial time to our problem. NP-
hardness is hence a useful notion to declare some computational
problem intractable, or practically infeasible, as nobody is sure
whether there exist polynomial time algorithms for all problems in
NP.

2.2 A Reduction from the k-Clique Problem to
Max-Sum Diversification

We will now show that the max-sum diversification problem (whose
output is a set of size k’ rather than a true/false decision) is NP-hard.
As already mentioned, we will do this by providing a polynomial
transformation from the k-clique problem, which is a well-known
NP-complete problem and was among the first problems to be
identified as NP-complete [3, 5].

This will be rather easy and we will need to define X and the
corresponding metric and argue what the resulting set of maximum
dispersion would tell us about the existence of a clique in a given
graph.

Given a graph G and a target clique size k, we will look for a
subset of the graph’s vertices that has maximum dispersion for
a hand-crafted distance function. That is, we set X = V(G) and

! A polynomial reduction is a special form of polynomial transformation that we don’t
discuss in detail. The interested reader is referred to e.g. Korte and Vygen [6].

P. Welke, T. Schulz, and C. Bauckhage

define
d:V(G)xV(G) — Ryxg (2)
0 ifo=w
do,w) = 1 if {o,w} € E(G) (3)
% if {o,w} € E(G)

Now, we note that the cliques of size k in G are exactly those
subsets S C V(G) of size k that have dispersion of k% —k: A k-clique
is a fully connected subgraph on k vertices. That is, this subgraph,
which is induced by vertices in S, contains exactly (];) = @
edges. Hence, all pairs of vertices v # w in the clique must fulfill
d(v,w) =1 and d(v,v) = 0. The resulting dispersion for this case is
then

> dlxx) :z@ =k —k.

x; €S x;€8

Note that each edge is counted twice in the summation. In contrast,
non-clique subsets of size k have strictly smaller dispersion, as there
exists, by definition, at least one pair of vertices v # w that is not
connected by an edge and hence d(v, w) = %

As as result, it follows that

d(xi,xj) =k* —k
SRS =k Z Z (i %))

xiEijES

if and only if there is a clique of size k in G. Hence, we can solve the
k-clique problem by solving the max-sum dispersion problem for
|S| = k and then check whether the maximizer S* has dispersion
k? - k.

This already concludes our little transformation and we are al-
most done. It remains to think about the time and space complexity
of this approach. Graphs are typically given in a sparse format, that
is, the size of the input is proportional to |V(G)| + |E(G)|. We note
that the distance matrix

[D]ij = d(vi,v)

is quadratic in |V(G)|, and can be created in time that is proportional
to its size. Hence the preprocessing can be done in polynomial time.
Checking whether the maximizer S* has dispersion k% — k can
be done by summing over all pairs of elements in S*, which is
quadratic in k (as |S*| = k).

It is interesting to note that d is a metric: it is symmetric, fulfills
the triangle inequality d(x,z) < d(x,y) + d(y,z) for all x,y,z €
V(G), and the identity d(x,y) = 0 & x = y. Thus, we have actually
shown that the max-sum diversification problem is NP-hard even
if the distance function is restricted to be a metric.

2.3 Homework

We have now seen that max-sum diversification is NP-hard by
giving a polynomial time reduction of the k-clique problem to max-
sum diversification. We would like to encourage the interested
reader to show that the complement variant

8* = argmin Z Z d(xi, x;)
ScX x;€Sx;eS (4)
ot |S] =k

G W e

Computational Complexity of Max-Sum Diversification

Listing 1: transformation of adjacency matrix to distance
matrix

def reductionDistance(matA):
matD = matA
matD[matD < 1] = 0.5
np.fill_diagonal (matD, @)
return matD

of this problem, that we call min-sum diversification, for now, is
also NP-hard. One way of achieving this would be to consider the
k-Stable Set (also called k-Independet Set) problem, that asks, for
a given graph G and integer k whether there exists a subset C of
vertices of size k such that no two vertices in C are connected by
an edge, which is another well-known NP-complete problem.

3 PRACTICE

We now turn to the practical implementation of our transformation
of the k-clique problem to max-sum diversification in NumPy . The
transformation itself is of little practical use if we do not use it to
solve the k-clique problem practically. Luckily, we already know
a way to come up with feasible but approximate solutions for a
max-sum diversification in the form of Hopfield networks as shown
in Bauckhage et al. [2]. We will use these previous results to find
answers to the k-clique problem that have a one-sided error. In
particular, if our algorithm returns “yes” to the question whether
there is a clique of size k, this answer is always correct. If, however,
the algorithm returns “no”, there is still a chance that in fact there
is a clique of size k.

We will now provide an implementation that neatly extends
the existing code [2]. It is, however, not the most efficient: When
working with real-world graphs, we are typically in the situation
that these graphs are sparse, i.e., that they have much less edges
than they could have. Hence, one would typically avoid working
with an adjacency matrix that is stored as a dense NumPy array.
While there are ways around this?, we focus on ease of exposition
and note that even this “inefficient” implementation fulfills our
requirements for a polynomial time reduction, as mentioned in the
previous section.

We will start with a graph provided in form of its adjacency
matrix A, where A contains entry 1 at position ij if there is an edge
between vertices v; and v; and a 0 otherwise. The adjacency matrix
of the graph in Figure 1 can be defined as follows:

matA = [[0. 1. @. 0. 1. 1. 1. 1. 0.]
[1. 0. 1. 0. 1. 2. 0. 1. 1.]
[e. 1. 0. 1. 1. 1. 1. 1. 1.]
[e. . 1. 0. 1. 1. 1. 1. @.]
Cilo 1o To To @ Vo To Vo Vol
Clo @ To To 1o @ 1o 1o Vol
[1. 0. 1. 1. 1. 1. 0. 0. 0.]
(1. 1.1, 1. 1. 1. 0. 0. o.]
[e. 1. 1. 0. 1. 1. 0. 0. 0.1]

It can be read row-by-row and tells us, for example, that the first
vertex is connected to the second, fifth, sixth, seventh, and eighth
vertex.

A straightforward implementation of our reduction distance
function d from the previous section is shown in Listing 1. It alters
the adjacency matrix by setting each entry that was zero (i.e., where

2Interested readers might want to check out scipy. sparse for useful data structures.

[N N

Listing 2: initializing parameters W and 0 of a Hopfield net

def hnetInitParameters(matD, k,
n = matD.shape

1=None):

matl = np.ones((n,n))
vecl = np.ones(n)
matl = np.eye(n)

if 1 is None:

1 = 20%n
matP = 1 % matl - matD
vecP = -1 x 2xk * vecl
matQ = 0.25 * (matP - 1 * matlI)
vecQ = 0.50 * (matP @ vecl + vecP)
matW = -2 * matQ
vecT = vecQ
return matW, vecT

Listing 3: transformation Hopfield net result to answer the
k-clique-problem

def reductionCheck(matD, vecS, k):
mask = np.where(vecS>0, True, False)
resultSize = print(np.sum(mask))
matS = matD[mask, :]
matS = matS[:, mask]
return (resultSize == k) and (np.sum(matS) > k * k - k - 0.25)

there is no edge) to % As this also includes the diagonal entries, we
have to reset them to zero afterwards, as d(vj, v;) for all v; € V(G)
is required to be zero by our definition. Having this, we can define
all input that we require for the max-sum diversification (e.g. for
k =4) by

k = 4
matD =

reductionDistance(matA)

We can now go on and use Hopfield networks to solve the k-
clique problem (aproximately!) in our graph, as was shown in
Bauckhage et al. [2]. To this end, we have to slightly alter their
initialization method, as it did not only initialize the parameters
of the Hopfield network, but also computed the distance matrix.
Listing 2 shows the slightly altered initialization method, which
now accepts a distance matrix as input. Hence

matw,
vecS =

vecT = hnetInitParameters(matD, k)
-np.ones(n)

initializes a Hopfield network to solve the max-sum diversification
problem corresponding to our k-clique problem and

vecS = hnetRunRnd(vecS, matW, vecT)

finds a solution and produces an output.

We now tend to the postprocessing step. We need to transform
the output of max-sum diversification which is a set that we assume
to be encoded as a binary vector s € {—1, 1}" to a yes/no answer for
our question “Is there a clique of size k = 4 in our graph?” Listing 3
shows how this can be achieved in NumPy . Line 2 converts the
{—1, 1} vector vecS to a {0, 1} vector that we can use to obtain the
distance matrix that corresponds to the subgraph on the vertices
selected by the Hopfield network. As this vector has a small chance
to not exactly contain the target number k of vertices, we check
this condition in Line 3. Lines 4 and 5 project the distance matrix

matD onto the distance matrix of the vertices that were selected by
our solver to max-sum diversification. The final line sums up all
elements in this projected matrix and checks if it is equal to k? — k.
It returns true if the latter is the case and if the size of our result
set is indeed k. To avoid numerical issues, we note that the largest
value that can appear if s does not describe a clique is k% — k — %
and we avoid the rather brittle check for equality of floating point
numbers. We can apply the postprocessing by

print(reductionCheck(matD, vecS, k))

If we are lucky, we obtain a feature vector, e.g.,

vecS = [-1. -1. 1. -1. 1. 1. -1. -1. 1.]

which corresponds to the clique that is drawn in yellow on the right
hand side of Figure 1.

However, we should expect that this is not always the case and
may revert to repeated iterations of our approach. If we repeat
our randomized algorithm for Hopfield networks and one iteration
finds a clique, we are sure that a clique exists, hence we can answer
’yes’. If our algorithm never finds a clique after a reasonable amount
of iterations, we may conclude that there is no clique of size k = 4.
In this case, there is the chance that we have made a mistake.

This strategy can be implemented by a simple loop

clique = None
for i in range(50):
vecS = -np.ones(n)
vecS = hnetRunRnd(vecS, matW, vecT)
hasClique = reductionCheck(matD, vecS, k)
if hasClique:
clique = vecS
break

print(clique)

4 CONCLUSION

In this short “theory nugget”, we have shown that max-sum diver-
sification is NP-hard, i.e., it is at least as hard to solve this as any
problem in the class NP. The polynomial time reduction that we
have used to do this is constructive and allows us to transform a
k-clique problem into a max-sum diversification problem. Using
code from a recent coding nugget [2] we can hence apply Hopfield
networks to find cliques of a given size.

Many problems that appear as subtasks in machine learning and
data mining are NP-hard, e.g. in the context of k-means clustering
[1], decision tree learning [4], in the context of graph mining [7, 10,
11], or graph kernels [8]. Showing that some problem is NP-hard is
an accepted reason to resort to efficient approximate solutions, as
finding an efficient exact algorithm might not be possible. Inexact
solutions with one sided error can often be used to great advantage,
as they allow some reasoning about the overall results of combined
algorithms in data mining scenarios, such as finding subsets [10]
or supersets [7, 9] of some set that we are actually interested in.

P. Welke, T. Schulz, and C. Bauckhage

ACKNOWLEDGMENTS

This material was produced within the Competence Center for
Machine Learning Rhine-Ruhr (ML2R) which is funded by the
Federal Ministry of Education and Research of Germany (grant no.
01IS18038C). The authors gratefully acknowledge this support.

REFERENCES

[1] Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. 2009. NP-
hardness of Euclidean sum-of-squares clustering. Machine Learning 75, 2 (2009),
245-248. https://doi.org/10.1007/s10994-009-5103-0

[2] Christian Bauckhage, Fabrice Beaumont, and Sebastian Miiller. 2021. ML2R
Coding Nuggets: Hopfield Nets for Max-Sum Diversification. Technical Report.
MLALI, University of Bonn.

[3] Michael. R. Garey and David S. Johnson. 1979. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman.

[4] Laurent Hyafil and Ronald L. Rivest. 1976. Constructing Optimal Binary Decision
Trees is NP-Complete. Inform. Process. Lett. 5, 1 (1976), 15-17. https://doi.org/10.
1016/0020-0190(76)90095-8

[5] Richard M. Karp. 1972. Reducibility Among Combinatorial Problems. In Pro-
ceedings of a symposium on the Complexity of Computer Computations (The
IBM Research Symposia Series). Plenum Press, New York, 85-103. https:
//doi.org/10.1007/978-1-4684-2001-2_9

[6] Bernhard Korte and Jens Vygen. 2018. Combinatorial Optimization (sixth ed.).
Springer.

[7] Till Hendrik Schulz, Taméas Horvath, Pascal Welke, and Stefan Wrobel. 2018.
Mining Tree Patterns with Partially Injective Homomorphisms. In European
Conference on Machine Learning and Knowledge Discovery in Databases ECML
PKDD Proceedings, Part I (Lecture Notes in Computer Science), Vol. 11052. Springer,
585-601. https://doi.org/10.1007/978-3-030-10928-8_35

[8] Till Hendrik Schulz, Taméas Horvéth, Pascal Welke, and Stefan Wrobel. 2021. A
Generalized Weisfeiler-Lehman Graph Kernel. (2021). arXiv:cs.LG/2101.08104v1

[9] Pascal Welke. 2017. Simple Necessary Conditions for the Existence of a Hamil-
tonian Path with Applications to Cactus Graphs. CoRR abs/1709.01367 (2017).
http://arxiv.org/abs/1709.01367

[10] Pascal Welke, Taméas Horvath, and Stefan Wrobel. 2019. Probabilistic and Exact
Frequent Subtree Mining in Graphs Beyond Forests. Machine Learning 108, 7
(2019), 1137-1164. https://doi.org/10.1007/s10994-019-05779-1

[11] Pascal Welke, Florian Seiffarth, Michael Kamp, and Stefan Wrobel. 2020. HOPS:
Probabilistic Subtree Mining for Small and Large Graphs. In ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD. ACM, 1275-1284.
https://dl.acm.org/doi/10.1145/3394486.3403180

https://www.ml2r.de
https://doi.org/10.1007/s10994-009-5103-0
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1016/0020-0190(76)90095-8
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-3-030-10928-8_35
http://arxiv.org/abs/1709.01367
https://doi.org/10.1007/s10994-019-05779-1
https://dl.acm.org/doi/10.1145/3394486.3403180

	Abstract
	1 Introduction
	1.1 Notions

	2 Theory
	2.1 NP-completeness and NP-hardness
	2.2 A Reduction from the k-Clique Problem to Max-Sum Diversification
	2.3 Homework

	3 Practice
	4 Conclusion
	References

