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Abstract. We introduce Splitting Stump Forests – small ensembles of
weak learners extracted from a trained random forest. The high memory
consumption of random forest ensemble models renders them unfit for
resource-constrained devices. We show empirically that we can signifi-
cantly reduce the model size and inference time by selecting nodes that
evenly split the arriving training data and applying a linear model on
the resulting representation. Our extensive empirical evaluation indicates
that Splitting Stump Forests outperform random forests and state-of-the-
art compression methods on memory-limited embedded devices.
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1 Introduction

The global count of Internet of Things (IoT) devices is expected to reach approx-
imately 20 billion units by 2025 [41]. Many IoT devices require real-time deci-
sions and therefore include limited computing capabilities [28]. Running machine
learning models directly on embedded devices is increasingly popular due to im-
provements in reliability, affordability, and energy efficiency [17]. Local models
also reduce or even eliminate the need for transferring data to cloud servers
when connectivity, bandwidth consumption, communication costs, network la-
tency, and privacy are significant concerns [20, 30].

Ensemble models can outperform the predictive performance of individual
classifiers in many machine learning tasks [13, 37]. However, ensemble mod-
els combine multiple base models, resulting in high memory consumption. The
model size is also a primary determinant of inference time, an aspect equally
important as model accuracy in real-time applications. IoT devices, however,
typically contain slow microcontrollers with limited flash memory, ranging from
a few Kbytes to a maximum of a few Mbytes, as shown in Table 1. As a result, the
best-performing ensemble model is often too large and too slow to be deployed
for real-time applications in IoT devices. This work presents small tree ensemble
models that provide responsive and highly accurate predictions. Decision trees
efficiently represent sequences of if-else conditions and can be compiled to run
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efficiently on embedded devices [8, 9]. We revisit these models and propose a
lossy compression scheme for their ensembles, random forests. A random forest
reduces the variance of the predictions compared to a single decision tree [5].
However, having only a few small trees in a random forest can hinder predictive
performance, while large random forests pose a significant challenge for resource-
limited devices. High-performing random forests often exceed 100K nodes (cf.
Table 4 in the supplementary material). As a result, these models may demand
more than 5-10 Mbytes of memory even in very compact implementations [9].

We propose a novel method to create a new, compressed ensemble from a
large random forest model, often comprising hundreds of thousands of nodes.
To enable compression, the approach extracts a subset of test nodes from a
trained random forest to build a smaller ensemble of splitting stumps with a
total size of only a few Kbytes. Our approach combines the supervised selec-
tion of splits in the training of random forests with an unsupervised measure
of balance on the training data. We argue that this reduces the tendency to
overfit the training data. The final model transforms the input data into multi-
hot encoding and trains a linear classifier to map the novel representation to
the target domain. Our extensive experimental evaluation on various datasets
shows the superiority of splitting stump forests over random forests and state-
of-the-art competitive ensemble compression techniques in terms of compression
rate, inference time, and predictive performance. Moreover, our experiments
demonstrate that the selected test nodes are informative and not accidental.

Table 1: Flash Memory on different micro-
controller units [1, 2, 4]

Microcontroller Unit Flash Memory

ATmega169P 16 KB
Arduino Nano 26-32 KB
Arduino Uno 32 KB
Atmel ATSAM3S2AA-AU 64 KB
Arduino Mega 256 KB

This article proceeds as follows:
We review related work in Sec-
tion 2. Section 3 provides a de-
tailed description of our method.
Section 4 describes our empiri-
cal evaluation before Section 5
concludes. Code for the split-
ting stump forests is available on
github.

2 Background

Our proposed random forest compression technique can be alternatively viewed
as model compression or representation learning approach. We now review re-
lated work in these fields.

Ensemble Compression The existing methods for ensemble size reduction can
be categorized into blackbox and whitebox approaches. Blackbox approaches do
not assume any particular model architecture. Instead, they work on the set
of models in an ensemble without changing individual base models. White box
approaches update base models, e.g., by pruning individual nodes of decision
trees in a random forest. We focus our discussion on whitebox approaches.

https://github.com/FouadAlkhoury/SplittingStumpsForests/
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Fig. 1: Splitting stump forests at a glance. Given a random forest (left), selected
nodes are selected (middle) and used as stumps (right). A training example is
then transformed into a binary vector by the stumps and fed to a linear model.

Seeking an optimal sub-ensemble within large random forests is often imprac-
tical. In general, identifying an optimal subset of classifiers with the best gener-
alization performance is an NP-complete problem [33]. Thus, most approaches
identify a sub-ensemble with near-optimal performance. Several studies have
been conducted on the pruning of machine learning models [25]. Moreover, con-
siderable efforts concentrated on identifying subsets of random forest nodes that
can match the original forest’s accuracy. Peterson and Martinez [34] introduced
a post-training technique that stores unique subtrees and combines redundant
nodes into “parallel nodes” while maintaining the overall behavior. Buschjäger
and Morik [10] introduced an innovative method that integrates regularization
into the leaf-refinement process. Their proposed algorithm jointly prunes and re-
fines trees, thereby enhancing the performance of tree ensembles. Prior research
has indicated that high diversity among ensemble models can enhance their
generalization performance. Li et al. [26] select classifiers that both minimize
empirical error and lead to greater ensemble diversity. Ranking-based strategies
sort individual models by their associated prediction error and select a few highly
ranked members to compose the sub-ensemble [22]. Nakamura and Sakurada [31]
reduce the number of distinct split conditions by sharing a common condition
among multiple nodes which allows for practical model size reductions. Other
studies have found that removing low-impact nodes from a decision tree can
simplify it while preserving accuracy [15]. In contrast, our approach constructs
a new ensemble that contains more but smaller trees than the original ensemble.

Representation Learning Decision trees and random forests can be interpreted
as representation learning [3], with studies exploring the use of a pre-trained ran-
dom forest’s transformed space as input for linear models. Ren et al. [36] enhance
the fitting power of a tree ensemble model by global leaf value refinement using
linear regression. Through global optimization, the approach iteratively merges
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Fig. 2: A random forest F consisting of two decision trees T1 and T2. Round
nodes represent leaves, rectangular nodes represent test nodes. The left (right)
edge label represents the fraction of training instances evaluating to true (false).
Selected nodes in T [p] for filtering threshold p = 0.2, are colored in blue.

insignificant pairs of adjacent leaves, effectively using complementary informa-
tion from multiple trees and reducing model size. Likewise, Nakano et al. [32]
integrate a representation learning component into the random forest methodol-
ogy. Their method treats ensemble nodes as clusters formed by instances during
recursive partitioning. Then it creates a binary vector where each element cor-
responds to a cluster node and is set to 1 if a training instance traverses the
node. This newly created tree embedding is then combined with the original
feature set. Welke et al. [43] identify frequent subtrees in a trained random for-
est and train a linear model on the resulting multi-hot leaf representation. Vens
and Costa [42] use the encoding of nodes visited by data instances. The final
feature encoding is obtained by concatenating the binary vectors of all trees in
the forest. Estruch et al. [16] leverage the common components within decision
tree ensembles. In this structure, the rejected splits are not discarded but stored
as suspended nodes. This allows these nodes to be further explored, allowing the
generation of new models.

3 The Splitting Stump Forests Method

In this section, we provide a description of our splitting stump forests method
to extract a compact model from a potentially large random forest. See, e.g.,
Breiman [5] or Quinlan [35] for a background on random forest and decision
tree algorithms. Given a trained random forest, we (1) compute a score for each
node and select nodes with high scores (Section 3.1). Our selection technique
prioritizes split values that yield balanced subtrees. Subsequently, we (2) con-
struct one decision tree per selected node and form an ensemble (Section 3.2).
Finally, our approach (3) integrates a representation learning module by using
the transformed space derived from the constructed ensemble as input for a lin-
ear model (Section 3.3). Figure 1 shows the pipeline of the three primary steps,
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Algorithm 1 Splitting Stump Forest Transformation

Input: Random forest F , training points Xtrain, threshold parameter p ∈ (0, 0.5]
Output: Splitting stump forest F ′ and training data representation X ′

train.

1: F ′ ← ∅
2: X ′

train ← ∅
3: for each tree T ∈ F do
4: for each node v ∈ T do
5: Xt

v(resp. X
f
v )← set of training points in v that are True (resp. False)

6: score(v)← min(|Xt
v|,|X

f
v |)

|Xt
v|+|Xf

v |
7: if score(v) ≥ p then
8: add v to T [p]

9: for each v ∈ T [p] do
10: T ′

v ← construct a splitting stump by linking leaves to the node v
11: add T ′

v to F ′

12: for each x ∈ Xtrain do
13: for each T ′ ∈ F ′ do
14: fT ′(x)← assign an encoding for x in T ′

15: add fT ′(x) to fF ′(x)

16: add fF ′(x) to X ′
train

17: return F ′ and X ′
train

which we will describe in turn. The pseudo-code of the first two steps is presented
in Algorithm 1. In Section 3.4 we discuss balanced splits in more detail.

In what follows, we consider a supervised learning problem where the instance
space is X ⊆ Rd and the target space is Y ⊆ R. Each data point x ∈ X
is a d-dimensional vector described by a set of features and mapped to the
corresponding label y ∈ Y . The goal is to find a function f : X → R such that
the difference between f(x) and the true label y is minimal for all x ∈ X. Labeled
instances Xtrain ⊆ X are provided during training, while unlabeled instances
Xtest ⊆ X are provided during testing. In this paper, we apply our approach to
classification tasks, but an extension to regression problems is possible.

We call the root and all internal nodes of a decision tree test nodes. Test
nodes are labeled with a split condition xa ≤ sv for a given attribute a and a
split value sv ∈ R. In this work, test nodes have exactly two children, called left
and right. When the split condition of node v for an instance x ∈ X evaluates
to True, the instance passes to the left child of v. A random forest classifier
F = {Tj |j ∈ [1, t]} consists of a set of t decision trees and a method to combine
individual predictions, e.g., majority vote.

3.1 Splitting Node Selection

The aim of the first step is to select a subset of balanced splits from a trained
random forest F . Technically, we propose a post-hoc selection criterion that
favors split conditions that lead to balanced splits. In particular, for all T ∈ F
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and for all nodes v of T , we count the number of incoming training points
that evaluate to true (resp. false) using the split condition at node v (Line 5 of
Alg. 1). To qualify as balanced, v should attain a score that meets or exceeds
a predetermined threshold p (Lines 6–7). Subsequently, we define T [p] as the
set of all nodes v with score(v) ≥ p (Line 8). In deep random forests, we can
limit the size of T [p] by arranging the scores in descending order and selecting
a specific number of nodes with the highest scores. In a binary decision tree,
score(v) ∈ [0, 0.5] and higher values indicate a better division of training samples
into two sub-samples of comparable sizes. Figure 2 shows the selection process
on a small random forest. For efficient computation of score(v), we store the
count of training examples traversing tree edges during training. Alternatively,
the counts can be derived by a single pass over an independent dataset that does
not require labeling. Once these numbers are accessible, scores can be computed
in constant time and high-scoring nodes can be selected by a single sweep across
the random forest. Duplicate split conditions can be efficiently removed using
an appropriate set data structure for T [p].

Note that a scoring function for decision stump learning with a similar for-
mula was introduced by Iba and Langley [21]. In contrast to our work, however,
their score replaces e.g. the Gini index in decision stump learning and directly
compares against the class label, while here we score a node in a decision tree
based on the balance of training samples between its left and right branches.

3.2 Splitting Stump Transformation

T [p], the result of the previous step, is a set of isolated vertices, each consisting
of a feature and split value, and is hence not a random forest by our definition.
By attaching two leaves to each node v ∈ T [p], we transform v into the root of
a decision tree T ′

v of depth one (line 10). These decision trees can be viewed as
learning a new data representation that maps a data point to a set of leaves. For
each decision tree T ′

v in the new ensemble F ′ of length k, we define a mapping
function fT ′

v
: Rd → {0, 1} that returns one if and only if the split condition in

node v evaluates to true on x (See line 14). For F ′, we thus construct a function
fF ′ : Rd → {0, 1}k which maps x to a new feature vector {fT ′

vi
(x)}ki=1. That

is, each training point x is embedded into the concatenation of features (ones
and zeros) resulting from the stumps (line 16). Using fT ′

v
instead of the two leaf

features of T ′
v is sufficient due to the perfect correlation between the two leaf

features resulting from each stump T ′
v.

3.3 Training of Splitting Stump Forests

To enable deployment to devices with limited resources, we use a linear model to
combine the individual predictions of the decision trees in F ′. We apply logistic
regression to model the relationship between the new feature vectors fF ′(x) and
the target variable. The resulting model is both resource-efficient and easy to
interpret. Conceptually, this step can be seen as simultaneously learning the leaf
node assignments of all decision stumps and the voting scheme of the resulting
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RF on Statlog SSF on Statlog RF on Rice SSF on Rice

Fig. 3: Example of decision boundaries in data classification between random
forests (RF) and the proposed splitting stump forests (SSF) on two-dimensional
projections of two datasets. SSF achieves a comparable accuracy using only 0.002
of the total nodes employed by the RF method.

random forest. Following the pruning of the random forest, similar post-training
approaches have been shown to work well [10, 36]. Consider a single splitting
stump T ′

v: Training a logistic regression classifier on one-hot encoded represen-
tations fT ′

v
assigns a weight to each of the two dimensions that, for binary

classification, corresponds to the likelihood of belonging to the target class. A
similar approach works for regression tasks using a linear regression learner.

3.4 Further Details on Splitting Node Selection

The most common way to train random forests is based on bagging the training
data and then using a recursive algorithm with a Gini-index or mutual informa-
tion based split criterion selection. This reduces the variance of the predictions of
the resulting model, but tends to increase the complexity of the model. Figure 3
shows the decision boundaries of trained random forests on two-dimensional
feature-subsets of the statlog and rice datasets. In our two examples, the focus
on pure splits in combination with voting results in the partition of the feature
space into rather small and discontinuous regions. We argue that this may be
detrimental to generalization and that simpler models may be found that yield
similar performance at smaller sizes.

Small regions can arise when split criteria cut off a relatively small portion of
the training data with pure labels. When the split condition of a node v evalu-
ates to true (or false) for most incoming training points Xv ⊆ Xtrain, it leads to
imbalanced subsets at the deeper level of the tree. These imbalanced subsets con-
sist of a nearly pure and relatively small subset, thus facilitating good prediction
on the training set, but also may cause overfitting and can increase sensitivity to
noise and outliers. Conversely, the other branch typically contains a large subset.
This results in deeper trees, longer inference times, and reduced human readabil-
ity [24, 40]. Moreover, this behavior can negatively impact prediction accuracy
as the algorithm prioritizes outliers or errors less relevant in the generalization
process creating overly specific rules based on limited information. In this study,
we investigate the effect of choosing attribute-value combinations that result
in balanced splits. These combinations of balanced splits empirically facilitate
good data partitioning, thereby helping learners avoid overfitting [7]. Figure 3
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shows the decision boundaries of our corresponding splitting stump forests. In
these illustrative examples, selecting nodes that lead to balanced splits for SSF
increases the sizes of the continuous regions while reducing overall model size
and maintaining similar predictive performance of the resulting model.

4 Experiments

Table 2: Average rankings of methods
across 13 datasets based on accuracy,
compression ratio, and inference time for
each depth. Here, rank one is assigned to
the best-performing method, two to the
second-best, and so on. The last column
shows the global ranking across all depths
and datasets.

Method d = 5 d = 10 d = 15 Global

RF Acc. 5 4.69 3.23 4.31
Size 7 7 7 7
Inf. 6.08 5.46 5.46 5.67

CCP Acc. 6.46 6.62 6.85 6.64
Size 4 2.38 1.85 2.74
Inf. 4.69 3.54 3.46 3.90

DREP Acc. 4.23 3.62 3.69 3.85
Size 3.62 4.69 5 4.44
Inf. 3.07 3.08 2.85 3

IE Acc. 4 3.23 3.38 3.54
Size 3.69 4.54 5.08 4.43
Inf. 2.92 3.23 2.92 3.03

LR Acc. 2.69 3.15 4.38 3.41
Size 5.23 4.77 4.85 4.95
Inf. 4.92 6.77 6.69 6.13

LR+L1 Acc. 2.23 2.77 2.69 2.56
Size 3.38 3.46 3 3.28
Inf. 6 4.85 5.15 5.33

SSF Acc. 2 2.38 2.39 2.26
Size 1.23 1.15 1.30 1.23
Inf. 1.69 1.69 1.92 1.77

Datasets We experiment on 13
benchmark classification datasets
with varying properties, primarily
from the UCI repository (Adult,
Letter Recognition, MAGIC, Spam-
base, Statlog, Waveform) [14], ALOI
[19], Bank [29], Credit Card [45],
Dry Bean [23], Rice [11], Room [39]
and Shoppers [38]. This diverse se-
lection enables the evaluation across
varying complexities.

Competitive Methods To evaluate
the splitting stump forests approach
(SSF), we perform a comparative
analysis against the random forest
(RF), the baseline cost complexity
pruning (CCP) [6], and four state-
of-the-art compression methods: the
global refinement approach (LR)
[36]4, the joint leaf refinement and
ensemble pruning (LR+L1) [10]5,
the diversity regularized ensemble
pruning method (DREP) [26], and
the individual error pruning method
(IE) [22]6.

Experimental Setting We train ran-
dom forests, using the Gini index re-
duction for splitting, by varying the
maximum depth d of individual de-
cision trees among d ∈ {5, 10, 15}
and the number t of decision trees
among t ∈ {16, 32, 64}. The same d and t values are adopted as in the SSF
method for each approach being compared. To determine optimal parameters,

4 available at github.com/gereleth/kaggle-telstra
5 available at github.com/sbuschjaeger/leaf-refinement-experiments
6 both available at github.com/sbuschjaeger/PyPruning

https://github.com/gereleth/kaggle-telstra/blob/master/Globalrefinementofrandomforest.ipynb
https://github.com/sbuschjaeger/leaf-refinement-experiments
https://github.com/sbuschjaeger/PyPruning
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we conduct a grid search for each method. We perform 5-fold cross-validation
and report the average accuracy achieved on test data for each d. The thresh-
old parameter p is set to values {0.05, 0.1, ..., 0.4, 0.45}. Code for SSF and all
experiments is accessible online.7

Comparison of Methods We report the average test accuracy, the number of
nodes (test nodes and leaves), and the prediction time, also referred to as infer-
ence time. Table 2 presents a summary of this experiment, displaying the aver-
age ranking achieved by each method across the 13 datasets. This mean ranking
demonstrates the consistent superiority of the SSF approach, with respective
global rankings of 2.26, 1.23, and 1.77 concerning predictive performance, model
size compression, and inference time. In terms of predictive performance, SSF
outperforms original random forests (RF) and state-of-the-art methods in 22 out
of 39 runs (across 13 datasets, each with three maximum depth values). In most
other runs, SSF accuracy is within 1% of the top-performing model. SSF signifi-
cantly reduces model size by two to three orders of magnitude compared to other
methods and achieves the best compression ratio in 32 out of 39 runs, achieving
a global ranking of 1.23. Considering the mean ranking, SSF exhibits a marginal
improvement in predictive performance compared to the LR+L1 method, while
consistently excelling in reducing model size. Inference time for SSF is faster
than the best-performing models of competing methods in 31 out of 39 runs,
achieving a global ranking of 1.77. Scoring and selecting nodes in SSF training is
efficiently done through a preorder tree traversal, with a time complexity of O(n)
where n is the number of nodes in the random forest if we store a record of the
training examples that traverse edges during random forest training. Looking at
Figure 4, we note that the SSF outperforms competing methods in model size
and inference time across all datasets while achieving the best or second-best
levels of accuracy.

4.1 Predictive Performance on a Space Budget

Motivated by space constraints on small embedded devices, we analyze the per-
formance of SSF and the competitive ensemble pruning methods in a space
budget. To that end, we explore various random forest configurations with
d ∈ {5, 10, 15}, t ∈ {8, 16, 32, 64}, and the corresponding parameters for each
competitive method, evaluating predictive performance and model size (node
count) for each configuration. To accommodate devices with limited storage ca-
pacity, we select the best models that can fit within 32 KB or 16 KB of memory.
Such models are suitable for deployment on microcontroller units like the Ar-
duino Uno and ATmega169P. We estimate the model size using the baseline
implementation of decision trees established by Buschjäger and Morik [9] and
applied in subsequent studies [10]. This implementation indicates that each node
requires 17 + 4C bytes of memory, where C represents the number of classes.

7 https://github.com/FouadAlkhoury/SplittingStumpsForests/

https://github.com/FouadAlkhoury/SplittingStumpsForests/
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Fig. 4: The figure shows the highest test accuracy achieved with a maximum
depth d = 5, along with its associated compression ratio and inference time, for
each method and dataset.

Figure 5 shows that SSF models outperform RF models across all datasets.
Notably, this improvement exceeds 3% in five datasets. Particularly in multi-
classification tasks like the letter recognition dataset (26 classes) and the dry
bean dataset (7 classes), the improvement is significant, due to the complexity
of multi-class problems [44]. In these tasks, deep random forests excel in captur-
ing the complex decision boundaries necessary for reasonable accuracy. However,
the best random forest model for the letter dataset requires 4 MB of memory,
exceeding the IoT device’s budget. Thus, we recommend using SSF models (of
size below 10 KB in most datasets) for multi-classification tasks. Then, we em-
ploy the post-hoc Friedman test methodology as outlined by Demšar [12] for
32 KB and 16 KB budgets to check for statistically significant performance dif-
ferences among the seven examined methods. We formulate the null hypothesis
as all methods perform equally well without significant differences. The Fried-
man test ranks the methods for each dataset and each of 5 runs, assigning the
top-performing method a rank of 1, the second-best a rank of 2, and so forth.
This test determines whether the average ranks significantly deviate from the
expected mean rank of 4. Average ranks provide a useful comparison of the
methods, as illustrated in Table 3. Notably, the computed p-values for both 32
and 16 KB scenarios are 5.8 × 10−40 and 2.14 × 10−41 respectively, leading to
the rejection of the null hypothesis at a highly significant level. As statistical
significance is revealed, we apply a post-hoc procedure for multiple comparisons
as proposed by Garćıa et al. [18]. Using the Conover Test, we conduct 21 pair-
wise comparisons among the seven methods, at confidence levels of 95%, 99%,
and 99.9%. Fig. 6 demonstrates that both SSF and LR+L1 significantly deviate
from the other 5 methods at the highest confidence level p-value < 0.001 in both
the 32 and 16 KB scenarios. Moreover, the computed p-value between the SSF
and LR+L1 is 1.1×10−2 in the 16 KB scenario, indicating that SSF outperforms
LR+L1 with 95% confidence on memory-limited devices.
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Fig. 7: The plot shows the compression ratio achieved in the datasets adult,
shoppers, spambase (left to right) while permitting a 2% accuracy drop.

4.2 Compression on a Performance Budget

As a complementary experiment, we explore compression while tolerating a slight
drop in accuracy. We identify the smallest SSF model within a 2% accuracy
margin compared to the RF model with varying values of d and t. For a relatively
small RF with d = 5 and t = 16, we achieved an average compression rate
of 0.04 across all datasets. Moreover, as the random forest size increased, so
did the compression rate for most datasets. Notably, the SSF method yielded
compression values of 0.012, 0.02, 0.017, 0.025, 0.037, and 0.005 for the datasets
spambase, shoppers, adult, room, rice, and bank, respectively; see Figure 7.

4.3 Optimizing Accuracy vs. Compression

To validate our assumption regarding the informativeness of nodes with highly
balanced branches, and as our problem involves balancing a trade-off between
the predictive performance and model compression, we investigate the impact
of varying filtering thresholds p on the trade-off between the two objectives. In
particular, we examine the Pareto frontier which enables us to concentrate on
the set of efficient choices of p known as non-dominated solutions [27].
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compression ratio and accuracy. The left plot shows the percentage of exper-
iments in which p is non-dominated by another p′ in various problem settings
t ∈ {16, 32, 64}, d ∈ {5, 10, 15}. Right, we exemplarily show the non-dominated
thresholds in red, and dominated ones in blue on adult, t = 64, d = 10.

Table 3: The table shows the best accuracy with a model size below 16 KB and
32 KB. Bold entries indicate the best method for each dataset. The last line
shows the average ranking of the accuracy of each method across all datasets.

16 KB 32 KB

Dataset RF CCP DREP IE LR LRL1 SSF RF CCP DREP IE LR LRL1SSF

adult 82 81.9 80.5 82.9 84.4 85.7 86.1 85.1 82.3 83.4 84.3 85.9 86.2 86.1
±0.4±0.3 ±0.2 ±0.6±0.4±0.3 ±0.3 ±0.3±0.4 ±0.4 ±0.5±0.3±0.3 ±0.3

aloi 96.7 96.2 96.9 96.9 96.1 97.0 97.1 96.8 96.2 96.9 97 96.1 97.1 97.1
±0.4±0.1 ±0.1 ±0.1±0.1±0.1 ±0.1 ±0.1±0.1 ±0.1 ±0.1±0.1±0.1 ±0.1

bank 89.9 88.9 89.8 89.7 90.0 90.2 90.1 90 88.9 89.8 89.7 90.1 90.4 90.1
±0.1±0.5 ±0.1 ±0.1±0.3±0.3 ±0.2 ±0.1±0.3 ±0.1 ±0.1±0.2±0.2 ±0.1

credit 81 80.7 80.8 81.1 81.4 81.1 81.1 80.9 80.7 81 81.3 81.4 80.9 81.2
±0.2±0.3 ±0.1 ±0.2±0.3±0.1 ±0.2 ±0.1±0.2 ±0.1 ±0.1±0.2±0.1 ±0.1

dry bean 88.1 85.4 89.1 88.7 89.2 91.8 91.4 87.9 87.4 89.3 89.9 89.4 91.8 91.4
±0.7±0.3 ±0.1 ±0.3±0.3±0.1 ±0.4 ±1.0±0.4 ±0.5 ±0.6±0.5±0.3 ±0.4

letter 62.5 64.3 62.6 62.1 62.9 76.3 93.0 63.3 61.2 65.9 65.8 78.2 71.4 93.0
±2.2±1.1 ±0.9 ±1.2±0.9±0.9 ±1.7 ±3.6±1.4 ±1.0 ±1.7±1.5±1.4 ±1.9

magic 84.9 83.2 83.7 84.2 84.9 85.8 86.3 86 83.5 83.8 83.9 86.1 86.5 86.3
±0.5±0.9 ±0.5 ±0.5±0.01±0.2 ±0.7 ±0.7±0.7 ±0.3 ±0.5±0.6±0.2 ±0.4

rice 92.5 93.7 93.1 0.93 93.2 93.5 93.8 93.4 93.7 93.6 93.5 93.2 93.5 93.8
±0.6±0.7 ±0.3 ±0.4±0.7±0.1 ±0.1 ±0.7±0.5 ±0.2 ±0.3±0.6±0.1 ±0.1

room 99.2 97.0 99.5 99.6 99.2 99.8 99.9 99.5 99.3 99.7 99.999.2 99.8 99.9
±0.3±0.4 ±0.1 ±0.2±0.6±0.2 ±0.2 ±0.1±0.2 ±0.1 ±0.2±0.3±0.1 ±0.1

shoppers 87.2 86.9 90.1 91.0 91.6 91.3 90.7 90.2 86.9 90.3 91.2 91.6 91.3 90.7
±1.5±0.6 ±0.3 ±0.2±0.4±0.3 ±0.4 ±1.2±0.2 ±0.4 ±0.1±0.4±0.2 ±0.2

spambase 90.8 91.3 90.9 92.4 91.6 92.7 95.3 91.1 91.7 92.9 92.4 94.3 93.2 95.3
±0.6±0.4 ±0.2 ±1.0±0.5±0.2 ±0.4 ±0.6±0.6 ±0.6 ±1.2±0.4±0.2 ±0.2

statlog 85.2 84.1 84.7 84.8 84.9 86.5 87.4 85.1 84.9 84.8 84.7 87.1 87.9 87.4
±1.6±1.0 ±0.4 ±0.4±0.8±0.2 ±0.3 ±0.8±0.6 ±0.7 ±0.6±0.5±0.2 ±0.1

waveform 96.9 95.1 96.9 96.9 96.9 97.0 97.1 96.6 95.1 97 97 96.9 97.2 97.1
±0.2±0.2 ±0.1 ±0.1±0.3±0.1 ±0.1 ±0.2±0.1 ±0.1 ±0.1±0.2±0.1 ±0.1

avg rank 4.79 5.86 4.79 4.17 3.94 2.09 1.54 4.72 6.32 4.45 4.28 3.51 2.1 1.88
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A non-dominated filtering threshold p∗ is where we cannot find another p
that improves accuracy without sacrificing compression, or vice versa. We deter-
mine the set of non-dominated points for each dataset and for each RF setting
t ∈ {16, 32, 64} and d ∈ {5, 10, 15}. Next, we compute the frequency of each
threshold p in the non-dominated set, focusing on data points achieving accu-
racy within 2% of the original RF accuracy. Omitting this step would result in
any data point with the maximum threshold of 0.45 being incorrectly classified
as non-dominated, given the monotonically increasing nature of the compres-
sion function. The findings, as shown in Figure 8, indicate that the threshold
p = 0.45 exhibits non-dominance in 71% of the experiments, while p = 0.40
demonstrates non-dominance in 30% of the cases. The other thresholds are non-
dominant in about 20%, except for p = 0.05 in only 7% of runs. Our findings
support our assumption that test nodes with high splitting power, like those
with p = 0.45, provide more information than nodes with low splitting power.
These high-scoring nodes represent only a small fraction of the entire nodes set
in the random forest, producing well-balanced branches, and resulting in a highly
accurate and compact model.
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Fig. 9: Comparison of the predictive per-
formance of the splitting stumps when
p = 0.4, p = 0.2, and sampling-based
splitting stumps of all scores. We report
the mean and standard deviation of 10
random samples.

We validate the informativeness of
our selected nodes by comparing their
predictive performance to that of a
randomly selected sample of the same
size. For a given dataset D, we re-
port the accuracy and number of se-
lected nodes n using the parameters:
d = 15, t = 64, p = 0.4. Then we ran-
domly sample n nodes from the entire
node set i.e. this case corresponds to
p = 0.0. These nodes are then trans-
formed into splitting stumps, and we
proceed to train a linear model us-
ing their data representation. To en-
sure experiment validity, we repeat
sampling ten times and calculate the
mean and standard deviation. We also sample n nodes that achieve a score bet-
ter than p = 0.2. Comparing the predictive performance of score-based splitting
stumps with p = 0.4 against sampling-based stumps, we find that score-based
stumps tend to perform better across most datasets, as shown in Figure 9. These
high-scoring stumps also outperform an equivalent-sized set of lower-scoring
nodes of p = 0.2, reinforcing our assumption that nodes with higher splitting
power provide more information.

5 Conclusion

We introduced Splitting Stump Forests, an approach that extracts nodes from a
trained random forest based on their splitting capabilities. Subsequently, we con-
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structed decision trees for high-scoring nodes and trained a linear model over the
derived data representations. Our extensive empirical tests indicate significant
reductions in model size and improved inference speed without sacrificing ac-
curacy across diverse datasets. We conducted a comprehensive comparison with
competing methods and an ablation study of our split criterion. Our encouraging
experimental findings revealed our method’s superiority in model size compres-
sion and inference time acceleration while maintaining a comparable level of
predictive performance. These outcomes raise interesting directions for future
research. In particular, to develop practical deployment strategies, ensuring that
the benefits of model compression can be fully realized in real-world applications
following the ongoing integration of machine learning models in edge devices.
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