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Abstract Nonwoven materials, characterized by a random fiber structure, are essen-
tial for various applications including insulation and filtering. An industrial long-term
goal is to establish a framework for the simulation-based design of nonwovens. Due
to the random structures, simulations of material properties on fiber network level
are computational expensive. We propose a predictive model hierarchy for inferring
an important material property – the nonwoven tensile strength behavior. The model
hierarchy is built using regression-based approaches, including linear and polyno-
mial models, which provide interpretable results. This allows for significant speedup
(six orders of magnitude) over the conventional simulations, while achieving good
prediction results (𝑅2 = 0.95). The proposed models open the application to non-
woven material design, as they provide accurate and cost-effective surrogates for
predicting material properties. In this way, our work serves as a proof of concept.
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1 Introduction

The efficient prediction of material properties based on production parameters is a
common goal for many industrial applications. This includes the nonwoven airlay
manufacturing, which serves as practical basis for this work. Nonwovens are char-
acterized by a random fiber structure that is usually bonded by thermal, chemical, or
mechanical procedures. Their low-cost production makes them a suitable choice for
many fabrics, such as filters, insulation materials or hygiene products [7]. Predict-
ing nonwoven properties from production parameters enables nonwoven material
design by providing insight into the effects of individual parameters. In order to
avoid costly experimental testing, this mainly involves simulation-based approaches,
which, however, often suffer from high computational effort [33]. More recently,
machine learning approaches have gained ground in this field, as they allow compar-
atively efficient predictions, see [2]. In particular, the integration of prior knowledge
into the training process, termed “Informed Machine Learning”, proved to be ben-
eficial in terms of training speed and quality of final predictive models [31]. This
work demonstrates the use of machine learning approaches for predicting nonwoven
material properties. We focus, as an example, on the tensile strength behavior of
airlay fabricated nonwovens (see Fig. 1(a)-(c)), for which we develop and propose
a predictive model hierarchy driven by simulation data. With this goal in mind, we
begin with a brief discussion of related literature in the field of nonwoven tensile
strength simulations and machine learning approaches, and then explain the novelty
and the structure of this work.

(a) (b) (c) (d)

Fig. 1: Nonwoven airlay manufacturing and property testing: (a) simulated fiber
dynamics and laydown in turbulent airflow (process of Airlay-K12 by machine
manufacturer AUTEFA Solutions), (b) fiber laydown zone, (c) final product, (d)
tensile strength test for a material sample (photo by IDEAL Automotive). Image
adapted from [14] with kind permission of the authors.
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1.1 Literature Overview on Nonwoven Modeling and Related Machine
Learning Approaches

Mapping production parameters to the tensile strength behavior of nonwovens re-
quires the simulation of the underlying production process and the mechanical behav-
ior of the resulting fiber structure. There are many approaches to virtual generation
of fiber structures, coming from statistical analysis and stochastic geometry [22, 28]
or three-dimensional volume imaging covering microscopy and X-ray tomography
[10, 23]. However, the challenge is to model the underlying production process,
which was done by Gramsch et al. [14] for nonwoven airlay production. The authors
introduced a chain of mathematical models coupled by parameter identification to
deal with the computational complexity that arises from several thousand airlaid
fibers in a complex machine geometry. The models cover a highly turbulent fiber
suspension flow, a stochastic surrogate for the fiber laydown on a moving conveyor
belt, and a bonding process mimicking the thermobonding. The suitability of such
model hierarchies for virtual nonwoven generation is topic in [33].

Various approaches in the literature deal with the simulation of the mechanic
behavior of nonwovens. A common procedure is to treat the nonwoven material as
a continuum, which allows the use of finite element methods [8, 12]. In these ap-
proaches, the behavior of individual fibers is not considered, but instead knowledge
of the statistical fiber orientation is incorporated to account for the randomness in
the material web. In contrast, there are approaches that consider the mechanical
behavior at the fiber network level, cf. [15, 18]. Kufner et al. [18] described the
material’s structure as an elastic Cosserat network. As resolving the behavior of
the individual beam-type fibers in an industrial-size virtual material sample is too
complex, additional homogenization techniques are necessary [19, 26]. Harmening
et al. [15] modeled the fiber structure as truss with nonlinear elastic behavior and
reduced the applied stress to the forces at the individual fiber joints, which mainly de-
termine the nonwovens’ tensile strength behavior. A problem-tailored data reduction
strategy and a singularly perturbed regularization approach enable simulations with
industrial-size samples. The approach underlying this work handles the problem-
inherent multiscales (interplay of deterministic structural effects at macro-scale and
random fiber alignment at micro-scale) and realizes the randomness in the fiber
structure generation by Monte-Carlo simulations.

In the field of machine learning, there is much literature on woven material
prediction, while modeling approaches for nonwovens are rare. Early work used
simple neural network architectures, which prevent any interpretability of the results,
to predict the strength of yarns [6] or worsted fabrics [11]. [1] investigated neural
networks and linear regression for predicting the tensile strength of woven fabrics,
limiting the work to seven training samples. Eltayib et al. [9] used linear regression
to predict tear strength of fabrics based on yarn count, yarn tenacity and fabric liner
density. The approach in [27] deploys multiple regression models to predict different
material properties of woven fabrics, but heavily relies on huge datasets and extensive
manual feature selection by domain experts. Due to the high computational cost of
generating training data and due to their specialization on weaving features, these



4 Antweiler et al.

approaches cannot be applied to property prediction of nonwovens. For nonwovens,
Rahnama et al. [25] proposed a feed-forward neural network based on a numerical
propagation model to compare heat and moisture propagation through different
nonwoven fabrics. Chen et al. [4] integrated simple logical rules developed by
domain experts into a neural network to predict elongation at break, but the paper
is limited to a single test example. Investigating nonwoven features and developing
a stretch algorithm, we employed linear regression for tensile strength prediction in
[2], which yields promising, accurate and interpretable results.

Aside from (non-)woven manufacturing, there are other works that address the
prediction of material properties from production parameters. Related to our work
are those that integrate prior knowledge about the underlying physical mechanics
into the data, the model architecture, or the loss term being optimized. For example,
Karpatne et al. [17] integrated physical knowledge about feature dependencies into
a neural network as additional loss terms. Lu et al. [20] presented an approach
in which knowledge about underlying material mechanics was incorporated into
a machine learning approach as algebraic formulas. However, with the handcrafted
neural network architectures, they are not able to provide interpretable results. Recent
research on combining machine learning and simulation approaches in a more general
context can be found in [30, 31]. Within the proposed taxonomy, our approach can be
contextualized as the integration of (i) algebraic equations and (ii) simulation results
from scientific and domain knowledge sources.

1.2 New Regression-based Predictive Model Hierarchy

The model-based simulation framework underlying this work goes back to Gramsch
et al. [14] for virtual fiber structure generation and to Harmening et al. [15] for tensile
strength computation. Its evaluation yields a tuple consisting of (utilized) production
parameters, a random fiber graph and an associated stress-strain curve indicating
the relationship between strain and stress during nonwoven’s tensile strength test-
ing. To account for the randomness in the fiber structure generation, Monte-Carlo
simulations are required, which multiply the already high time requirements. This
makes nonwoven material design impossible in practice and motivates a predictive
surrogate. Following our ideas and strategies developed in [2], we propose a new
regression-based model hierarchy for the prediction of the nonwovens’ stress-strain
behavior from production parameters (see Fig. 2). Once trained, the regression mod-
els are characterized by efficient evaluations allowing for significant speedup, while
providing good, interpretable results, as we will show.

The tensile strength model-based simulation framework (TSS-model) at the top
of the model hierarchy is built on a first principle-oriented model chain. It serves as
ground truth for predictions and provides the required datasets for machine learn-
ing. By considering linear regression, two approaches have been proposed in [2]
that allow to circumvent the high computational effort associated to the TSS-model:
The fiber graph feature-based predictive model (FGF-model) samples multiple fiber
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Monte-Carlo Simulation

Production Parameter
(𝒖)

Random Fiber Graph
(𝒗)
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Fig. 2: Predictive model hierarchy: Mappings from the production parameters to the
associated tensile strength behavior. Predictive relations are indicated with dashed
lines and simulations procedures with solid lines. For predictions, we employ linear
regression (LR), polynomial regression (PR) and an errors-in-variables model (EIV).

graphs, extracts associated graph and stretch features, and uses them to predict the
stress-strain curve for each fiber graph. The production parameter-based predic-
tive model (PP-model) predicts directly the mean stress-strain curve based solely
on production parameters. The FGF-model provides better predictions, but Monte-
Carlo simulations are necessary to derive expectations and variances from individual
fiber graph features. This is accompanied by a computational overhead required to
generate random fiber graph samples. The fact that the purely linear PP-model per-
forms worse suggests some nonlinear relationships between production parameters
and fiber graph features. In this work we introduce the novel production parameter
and mean graph feature-based predictive model (PP-MGF-model) as a compro-
mise between the established ones. The PP-MGF-model intercepts the nonlinearities
by predicting the mean graph features using polynomial regression. Then, these
(artificial) features are used as additional explanatory variables for predicting the
stress-strain curves with a linear (errors-in-variables) model, in order to recover the
good quality of the FGF-model. Its main advantage is that the model provides a good
predictive quality without requiring Monte-Carlo simulations.

1.3 Structure

The structure of this work is based on the regression-based predictive model hier-
archy depicted in Fig. 2. Section 2 outlines the TSS-model, by introducing the first
principle-oriented model chain, and lays the foundations for predictions. Section 3
discusses the FGF-model and the PP-model originating from Antweiler et al. [2]
and presents a performance study with focus on predictive quality. Section 4 intro-
duces the new PP-MGF-model, which is numerically investigated in comparison to
the established ones. Finally, Section 5 concludes with a general discussion and an
outlook to future work.
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2 First Principle Oriented Model Chain for Dataset Generation

The TSS-model is a first principle-oriented model chain that covers fiber graph
generation and tensile strength simulation, see [14, 15]. It maps from an input set of
28 (production) parameters to a random stress-strain curve instance as output. In this
work, we restrict to practically relevant production processes that are characterized
by 4 parameters and refer to them as 4-parametric (production) process class. The
resulting stress-strain curves obey a similar behavior that motivates a 2-parametric
labeling. We refer to this restriction as stress-strain curve class. To improve the
predictions in machine learning we consider additional fiber graph features. In this
section we explain the TSS-model (Section 2.1) and introduce input (production
parameters 𝒖, Section 2.2), output (stress-strain characteristics 𝒚, Section 2.3), and
auxiliary variables (random fiber graph features 𝒗, Section 2.4), before we describe
the generation of the datasets used for training and testing our regression models
in Section 2.5. Note that readers with focus on the predictive models may skip this
rather technical and mathematically extensive section and think of it as a black box
for data generation.

2.1 Fiber Graph Generation and Tensile Strength Simulation

The TSS-model involves a stochastic fiber lay-down model (A) with graph generation
(B) and an ordinary differential system for tensile strength testing (C). The model
parameters are specified in Section 2.2.

(A) A nonwoven material is the image of fibers deposited onto a moving conveyor
belt. Consider a cubic reference material volume V𝑅 over the nonwoven height 𝐻
with base area 𝑤2

𝑅 and let 𝑇𝑅 be the time needed to produce it. A deposited fiber of
length 𝐿 is identified with the lay-down time 𝑇 and the planar coordinates (𝑋,𝑌 ) of
one of its end points. It contributes to V𝑅, if 𝑋−𝑥𝐵 (𝑇) ∈ [−𝑤𝑅/2, 𝑤𝑅/2] is satisfied,
where 𝑥𝐵 accounts for the motion of the conveyor belt. In the three-dimensional web
a fiber is modeled in terms of the curve 𝜼 (𝑋,𝑌 ,𝑇) : [0, 𝐿] →V𝑅,

d𝜼𝑠 = 𝑹(𝜼𝑠 · 𝒆𝒙 + 𝑥𝐵 (𝑇)) · 𝝉𝑠 d𝑠, 𝜼0 = (𝑋 − 𝑥𝐵 (𝑇))𝒆𝒙 +𝑌 𝒆𝒚 + 𝑟 (𝑋)𝒆𝒛

𝑹(𝑥) = 1√
1+ 𝑟 ′(𝑥)2

[𝑰 + (
√

1+ 𝑟 ′(𝑥)2 −1)𝒆𝒚 ⊗ 𝒆𝒚 + 𝑟 ′(𝑥)(𝒆𝒛 ⊗ 𝒆𝒙 − 𝒆𝒙 ⊗ 𝒆𝒛)]

𝑟 (𝑥) = 𝐻
∫ 𝑥

−∞
𝑔(𝑥) d𝑥

with 𝑋 distributed according to the lay-down probability density function 𝑔 as well
as 𝑌 ∼ U([−𝑤𝑅/2, 𝑤𝑅/2]) and 𝑇 ∼ U([0,𝑇𝑅]) uniformly distributed. The system
above is based on the stochastic Stratonovich differential system

d𝝃𝑠 = 𝝉𝑠 d𝑠, d𝝉𝑠 = − 1
𝐵+1

[𝚷𝑠 (𝐵) · ∇Σ(𝜉𝑠) d𝑠+ 𝐴𝚷𝑠 (
√
𝐵) ◦d𝒘𝑠]



Predictive Model Hierarchy for Nonwoven Tensile Strength Inference 7

with unit tensor 𝑰, projection 𝚷𝑠 (𝑥) = 𝒏1,𝑠 ⊗ 𝒏1,𝑠 + 𝑥 𝒏2,𝑠 ⊗ 𝒏2,𝑠 as well as 𝝃0 = 0
and 𝝉0 uniformly distributed in the unit circle spanned by 𝒆𝒙 and 𝒆𝒚 . The stochastic
lay-down model for position and orientation ((𝝃,𝝉) : [0, 𝐿] → R3 ×S2) with unit
sphere S2 ⊂ R3 describes the path of a deposited fiber onto the 𝒆𝒙-𝒆𝒚 plane. In the
modeling for the fiber tangent 𝝉, the drift term prescribes the characteristic coiling
behavior with the potential Σ, while the white noise term with the Wiener process
(𝒘 : [0, 𝐿] → R3) and the amplitude 𝐴 accounts for fluctuations in the lay-down
process. Anisotropic behavior is indicated by the parameter 𝐵 ∈ [0,1] with the local
orthonormal triad {𝝉, 𝒏1, 𝒏2}, 𝒏1 ∈ span{𝒆𝒙, 𝒆𝒚}. The typical nestling behavior of
the fiber on the ramp-like contour surface of the nonwoven is modeled by the curve
𝜼. The contour line 𝑟 of the fiber material in machine direction is described by means
of the joint probability density function 𝑔 of the deposited material. A fiber end point
lies on the associated contour surface and the fiber orientation is aligned to it due to
the local rotation 𝑹(𝑥) ∈ SO(3).

(B) Our considerations are restricted to the embedded test material volume
V ⊂ V𝑅 with smaller base 𝑤2, 𝑤 = 𝑤𝑅 − 2𝐿, to exclude lateral boundary effects.
The random fiber web is consolidated by adhesive joints resulting from thermobond-
ing. Let 𝜼h denote the discretized fiber, i.e., a set of discrete fiber points. An adhesive
joint 𝒂 to be formed between two fibers 𝜼h and �̃�h is modeled as

𝒂 =
1
2
(𝒒★+ �̃�★)

if ‖𝒒★− �̃�★‖2 < 𝜅, (𝒒★, �̃�★) = argmin
(𝒒,�̃�) ∈𝜼h×�̃�h

‖𝒒− �̃�‖2

with contact threshold 𝜅 > 0. The adhesive joint takes the place of the fiber points in
contact within the respective fibers. As the minimizer might be not unique, we use the
first minimizer found for practical reasons. Since the fibers lie rather straight, cf. [14],
we assume at most one contact between each fiber pair. If more fibers are involved in
a contact, the resulting adhesive joint is centered between the respective fiber points
in contact. The resulting adhered fiber structure is considered as a connected graph
𝐺 = (𝑉,𝐸) with the nodes 𝑉 representing adhesive joints as well as fiber ends and
the edges 𝐸 indicating fiber connections between them. The graph is supplemented
by the node positions 𝒑0 :𝑉→R3 and the edge-associated fiber lengths 𝑙 : 𝐸→R≥0.

(C) The tensile strength test is modeled as differential system on the node positions
𝒑 :𝑉 × [0,1] → R3, initialized with 𝒑(·,0) = 𝒑0,

𝒑(𝑣,0) = 𝒑0 (𝑣), ∀𝑣 ∈ 𝑉𝑙 , 𝒑(𝑣, 𝑡) = 𝒑0 (𝑣) + 𝑡 ℎ𝒆3, ∀𝑣 ∈ 𝑉𝑢
𝜀 𝜕𝑡 𝒑(𝑣, 𝑡) =

∑
𝑒∈𝛿 (𝑣)

𝒇 𝑣𝑒 (𝑡), ∀𝑣 ∈ 𝑉 \ (𝑉𝑙 ∪𝑉𝑢)

𝒇 𝑣𝑒={𝑣,𝑣′ } (𝑡) =
𝒑(𝑣′, 𝑡) − 𝒑(𝑣, 𝑡)

𝑑 (𝑒, 𝑡) 𝑁

(
𝑑 (𝑒, 𝑡) − 𝑙 (𝑒)

𝑙 (𝑒)

)
with 𝛿(𝑣) ⊂ 𝐸 incident edges of node 𝑣. For fixed lower face 𝑉𝑙 , the upper face 𝑉𝑢 of
the fiber structure is linearly shifted away in (vertical) 𝒆3-direction (with maximal
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displacement ℎ > 0). In the interior nodes of the graph the acting traction forces
are balanced by a friction term with 𝜀 > 0. The force amplitude 𝑁 depends on the
relative strain of the fiber connection 𝑒 with respect to its length 𝑙 (𝑒), where 𝑑 (𝑒, 𝑡)
denotes the Euclidean distance between its endpoints, 𝑑 (𝑒, 𝑡) = | | 𝒑(𝑣, 𝑡) − 𝒑(𝑣′, 𝑡) | |2.
It reflects Hooke’s law in the stretched state and is taken as zero in the unstretched
state. The characterizing stress-strain relation for the fiber structure (with initial
height 𝐻) is then given by (𝜖 (𝑡),𝑇 ( 𝒑(·, 𝑡))), 𝑡 ∈ [0,1],

𝜖 (𝑡) = ℎ

𝐻
𝑡, 𝑇 ( 𝒑(·, 𝑡)) = −

∑
𝑣∈𝑉𝑢

∑
𝑒∈𝛿 (𝑣)

𝒇 𝑣𝑒 (𝑡) · 𝒆3.

2.2 Production Process Class

An airlaid nonwoven typically consists of two fiber types for which the TSS-model
has 28 input parameters in total: Each fiber type is characterized by length 𝐿 𝑓 , line
density (𝜌𝐴) 𝑓 , cross-sectional weighted elasticity modulus (𝐸𝐴) 𝑓 and lay-down
probability density 𝑔 𝑓 considered as normally distributed 𝑔 𝑓 ∼N(𝜇 𝑓 ,𝜎2

𝑓 ), 𝑓 = 1,2.
The joint probability density is then 𝑔 = 𝛽𝑛𝑔1+ (1− 𝛽𝑛)𝑔2 with fiber number fraction
𝛽𝑛 determined by mass fraction 𝛽. For technical reasons, we use a compact support
supp(𝑔) = [𝑥𝑙 , 𝑥𝑟 ]. The production plant is characterized by conveyor belt width 𝑏
and speed 𝑣𝐵 as well as mass rate ¤𝑚. The nonwoven sample is specified by height
𝐻 and width 𝑤. Production time 𝑇𝑅, trace curve 𝑥𝐵 and number of deposited fibers
per type 𝑛 𝑓 , for 𝑓 = 1,2, are resulting quantities. The laydown is parameterized
regarding diffusion 𝐴, anisotropy 𝐵 and bending potential Σ expressed by the three
standard deviations 𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧 in 𝒆𝒙, 𝒆𝒚 , 𝒆𝒛-directions. The bonding considers fiber
discretization length 4𝑠 and contact threshold 𝜅. The strength test is parametrized
by adhesive thickness 𝑧 for upper and lower structure faces, friction-associated
regularization 𝜀 as well as traction function 𝑁 with a regularization parameter 𝛿.
Note that the displacement ℎ in the strength test belongs to the input quantities.

Since the parameters (𝜌𝐴)1, (𝜌𝐴)2, 𝛽 = 𝛽1/𝛽2, ¤𝑚 and 𝑏 only occur in the quan-
tities 𝛼 𝑓 = 𝛽 𝑓 ¤𝑚/((𝜌𝐴) 𝑓 𝐿 𝑓 𝑏), for 𝑓 = 1,2, indicating the number of fibers for each
type deposited per second and meter in cross direction on the conveyor belt, three
parameters can be eliminated. Making the model dimensionless with nonwoven sam-
ple width 𝑤, conveyor belt speed 𝑣𝐵 and elasticity modulus (𝐸𝐴)1 reduces the set of
input parameters by further three. The resulting dimensionless numbers are mainly
formulated as ratios, cf., Table 1. Note that the strength test is stated in dimensionless
form to incorporate the friction-associated (dimensionless) regularization parameter
𝜀� 1 that ensures a unique solution.

In this work, we consider a 4-parametric production process class. The process
class is motivated from the industrial test setting in [14]: We adopt all industrial
values – except for 𝒖 = (�̂�, �̂�, �̂�𝑦 , 𝜅) ∈ R4

+. These four inputs affect the fiber amount
in the nonwoven (sample), the fiber laydown behavior and the bonding (i.e., fiber
graph topology). By varying them in a certain regime, a broad variety of practically
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Table 1: Characteristic dimensionless input parameters for TSS-model. Values for an
industrial airlay process (mixture of solid (PES) and bi-component (PES/PET) fibers
in plant K12, cf., scenario in [14]). Referential values in SI units: 𝑤 = 1.0 · 10−2 m,
𝑣𝐵 = 3.3 ·10−2 m/s, (𝐸𝐴)1 = 1.0 N.

Description Symbol Value

fiber length 𝐿1/𝑤, 𝐿2/𝐿1 5.5, 1.0
fiber number 𝛼1𝑤

2/𝑣𝐵, 𝛼2/𝛼1 1150, 0.65
elasticity modulus (𝐸𝐴)2/(𝐸𝐴)1 1.0
lay-down pdf mean 𝜇1/𝑤, 𝜇2/𝑤 0, 0
lay-down pdf std 𝜎1/𝑤, 𝜎2/𝜎1 2.0, 1.0
support joint lay-down pdf 𝑥𝑙/𝜎1, 𝑥𝑟/𝜎1 −5.0, 5.0
nonwoven sample height 𝐻/𝑤 6.0
bending potential (std) 𝜎𝑦/𝑤, 𝜎𝑥/𝜎𝑦 , 𝜎𝑧/𝜎𝑦 2.0, 0.75, 0.075
diffusion 𝐴

√
𝜎𝑦 2.8 · 10−2

anisotropy 𝐵 3.0 · 10−1

fiber discretization 4𝑠/𝑤 2.75 · 10−2

contact threshold 𝜅/𝑤 2.6 · 10−2 (calibrated)
adhesive thickness at faces 𝑧/𝑤 6.0 · 10−2

friction regularization 𝜀 1 · 10−7

traction regularization 𝛿 1 · 10−4

Table 2: Input 𝒖 (4-parametric production process class) for machine learning.
Parameter ranges for dataset used in ML approach and respective values in industrial
scenario, Table 1. The values of all other parameters (ratios) are taken from Table 1.

Symbol Range Industrial Value Effect

�̂� = 𝛼1𝑤
2/𝑣𝐵 [1000, 1515] 1150 amount of fibers

�̂� = 𝜎1/𝑤 [1.0, 5.0] 2.0 laydown behavior
�̂�𝑦 = 𝜎𝑦/𝑤 [1.0, 5.0] 2.0 laydown behavior
𝜅 = 𝜅/𝑤 [2.8, 3.0] · 10−2 2.6 · 10−2 bonding

relevant airlay scenarios are covered, see Table 2 for the parameter ranges underlying
our dataset for machine learning. Note that the larger chosen 𝜅 ensures a stronger
bonding and hence a denser fiber structure than in the industrial test case.

2.3 Stress-Strain Curve Class

The stress-strain curves of the nonwovens obtained by the 4-parametric production
process class show a similar pattern and allow for a 2-parametric labeling, 𝒚 = (𝛼, 𝛽).
The observed output curves are constant at a stress close to zero up to a threshold
value 𝛼 of applied strain, above which they increase quadratically with coefficient 𝛽,
see Fig. 3. The behavior results from more and more fibers coming under strain and
thus contributing to the tensile strength, neglecting plastic effects and fiber tearing.
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Fig. 3: Stress-strain curves obtained for fixed parameter setting by TSS-model.

Hence, we model the relation between strain and stress for a nonwoven sample by

𝑇𝒚 (𝜖) =
{

0, 𝜖 < 𝛼

𝛽(𝜖 −𝛼)2, 𝜖 ≥ 𝛼
, 𝒚 = (𝛼, 𝛽) ∈ R2

+ (1)

where 𝜖 refers to the relative strain applied to the sample and 𝑇𝒚 : R+ → R+ to the
resulting reacting force.

The approximation of the stress-strain curve by the constant-quadratic ansatz
enables a straightforward machine learning modeling approach with only two output
parameters 𝒚 = (𝛼, 𝛽) as labels for prediction – instead of a complex output curve.
The general tensile strength behavior can be characterized using the joint distribution
of 𝛼 and 𝛽. To draw conclusions about the randomness of the material, the constant-
quadratic ansatz can be used to compute, for example, the mean stress and the
associated variance at individual strain levels.

2.4 Fiber Graph Features

The use of fiber graph features for predicting tensile strength has turned out to
be advantageous in machine learning. According to Antweiler et al. [2] we use
two groups of features: topological graph features representing the fiber structure
connectivity which likely affects the nonwoven’s tensile strength and stretch features,
which are obtained by a heuristic stretching algorithm based on elongation of the
nonwoven samples, allowing only vertical displacements of the nodes and no strain
on the individual fibers. The identification of the features and the stretching algorithm
originate from [2].
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Fig. 4: Illustration of some graph features. Fiber graph with |𝑉 | = 10 nodes, |𝐸 | = 17
edges. Face sets 𝑉𝑢 and 𝑉𝑙 are colored in blue, and red, respectively. For path 𝑃,
length variants 𝐿1, 𝐿2 and 𝐿3 are based on edge-wise fiber lengths 𝑙 (𝑒) and Euclidean
lengths 𝑑 (𝑒). A minimum cut 𝐶min separates all nodes above the value 1.5 from all
nodes below that value, |𝐶min | = 4.

Topological Graph Features. The graph feature set contains the numbers of nodes
|𝑉 | and edges |𝐸 |, maximum node degree 𝑑max = max𝑣∈𝑉 𝛿(𝑣), total fiber lengths
𝐿fiber =

∑
𝑒∈𝐸 𝑙 (𝑒) as well as the numbers |𝑉𝑢 |, |𝑉𝑙 | of upper and lower face nodes.

Moreover, to encode the graph connectivity several path and length-associated
features are considered, see Fig. 4. Let 𝐿1 (𝑃) = len(𝑃) denote the edge count,
𝐿2 (𝑃) =

∑
𝑒∈𝑃 𝑙 (𝑒) and 𝐿3 (𝑃) =

∑
𝑒∈𝑃 𝑑 (𝑒) the fiber and Euclidean lengths for a path

𝑃. Of interest are the shortest paths connecting the upper and lower faces – in terms
of edge count 𝑃1 and fiber length 𝑃2, i.e., 𝑃1 = argmin {𝐿1 (𝑃𝑢𝑣) | 𝑢 ∈ 𝑉𝑙 , 𝑣 ∈ 𝑉𝑢} and
𝑃2 = argmin {𝐿2 (𝑃𝑢𝑣) | 𝑢 ∈ 𝑉𝑙 , 𝑣 ∈ 𝑉𝑢}, so we include 𝐿1 (𝑃1), 𝐿2 (𝑃2) and 𝐿3 (𝑃2)
to the feature set. In addition, we consider mean, median and sum of differences
between fiber and Euclidean length over all edges {𝑙 (𝑒) − 𝑑 (𝑒) | 𝑒 ∈ 𝐸} and the size
of a minimum cut 𝐶min, i.e., edge set with minimum cardinality disconnecting 𝑉𝑢
from 𝑉𝑙 when removed.

Stretch Features. The stretch features obtained from the stretching algorithm by
Antweiler et al. [2] provide information about the nonwoven behavior under vertical
tensile loading. A graph 𝐺 with node positions 𝒑 and edge-associated fiber lengths
𝑙 is called a valid instance if the following length constraint is satisfied,

𝑙 ({𝑣,𝑤}) ≥ ‖ 𝒑(𝑣) − 𝒑(𝑤)‖2 = 𝑑 ({𝑣,𝑤}) ∀{𝑣,𝑤} ∈ 𝐸.

The stretching algorithm (Algorithm 1) addresses the question of how far the nonwo-
ven sample can be stretched vertically without stretching any fibers, i.e., maximizing
the sum of height coordinates of the upper face nodes 𝑉𝑢, while fixing the positions
of the lower face nodes𝑉𝑙 and keeping the instance valid. For computational reasons
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Algorithm 1 Graph Stretching Algorithm
Input: a valid instance (𝐺, 𝒑, 𝑙) and 𝑉𝑙 ≠ ∅
Output: a valid instance (𝐺, �̃�, 𝑙) that maximizes the objective of ZStretch

1: set �̃� (𝑣) = 𝒑 (𝑣) ∀𝑣 ∈ 𝑉
2: set 𝑉⊥ = 𝑉𝑙 and 𝐵 = N (𝑉⊥) where N () refers to the neighbor nodes
3: for 𝑣 = argmin𝑤∈𝐵𝑚𝑎𝑥𝑀𝑜𝑣𝑒 (𝑤,𝑉⊥) do
4: pop 𝑣 from 𝐵
5: �̃�3 (𝑣) =𝑚𝑎𝑥𝑀𝑜𝑣𝑒 (𝑤,𝑉⊥) + 𝑝3 (𝑣)
6: add 𝑣 to 𝑉⊥
7: 𝐵 = 𝐵∪N (𝑣) \𝑉⊥

the algorithm assumes that the fiber nodes (outside 𝑉𝑙) can only move freely in
the vertical (third) dimension while their horizontal position is fixed. Given a valid
instance (𝐺, 𝒑, 𝑙) and 𝑉𝑙 ⊆ 𝑉 the ZStretch problem reads:

max
∑
𝑣∈𝑉𝑢

𝑝3 (𝑣)

subject to: �̃�(𝑣) = 𝒑(𝑣) ∀𝑣 ∈ 𝑉𝑙 ,
𝑝1 (𝑣) = 𝑝1 (𝑣) ∀𝑣 ∈ 𝑉,
𝑝2 (𝑣) = 𝑝2 (𝑣) ∀𝑣 ∈ 𝑉,

𝑑 ({𝑣,𝑤}) ≤ 𝑙 ({𝑣,𝑤}) ∀{𝑣,𝑤} ∈ 𝐸,

where 𝑝𝑖 = 𝒑 · 𝒆𝒊 , 𝑖 = 1,2,3, denote the spatial coordinates. The optimization problem
certainly ignores many real-world structure properties, e.g., fiber intertwining, or
the fact that fiber nodes can in reality move in all three dimensions to allow further
stretching of the nonwoven sample in the third dimension. But due to its simplicity it
can be solved in𝑂 ( |𝐸 | log( |𝑉 |)) run time by Algorithm 1. As a result, a lower bound
to the maximum movement of any fiber node in vertical direction is determined.
We use mean, standard deviation, median, maximum, and sum of the differences
between initial and optimized upper face node positions as stretching features.

As extension, stretching of the individual fibers up to a multiple of their lengths
is incorporated by weakening the length constraint to 𝑙 (𝑒) = 𝑐𝑙 (𝑒) ≥ 𝑑 (𝑒) for some
𝑐 > 1. For increasing values of 𝑐 and a fixed graph, this provides a nonlinear behavior
of the average vertical positions of the upper face nodes. We particularly determine
the stretch features for various length factors, 𝑐 ∈ {1,1.05,1.1, . . . ,1.5}, see Table 3.

2.5 Dataset

The machine learning dataset is generated using the TSS-model. The combina-
tions of input production parameters are randomly selected from a range that yields
reasonable fiber structures, cf., Table 2. While the generation of fiber graphs and
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Algorithm 2 maxMove Subroutine
Input: a node 𝑣 ∈ 𝑉 and 𝑉⊥ ⊆ 𝑉 .
Output: the largest ℎ such that �̃� (𝑣) = 𝒑 (𝑣) + ℎ𝒆3 satisfies ‖ �̃� (𝑣) − 𝒑 (𝑤) ‖2 ≤ 𝑙 ( {𝑣, 𝑤})
∀𝑤 ∈ N (𝑣) ∩𝑉⊥

1: for all {𝑣, 𝑤} ∈ 𝐸 do
2: find the largest ℎ s.t.
3: �̃� (𝑣) = 𝒑 (𝑣) + ℎ𝒆3 satisfies
4: ‖ �̃� (𝑣) − 𝒑 (𝑤) ‖2 ≤ 𝑙 (𝑣, 𝑤) ∀𝑤 ∈ N (𝑣) ∩𝑉⊥

Table 3: Input features for regression models.

Set Symbols Description

param 𝒖 four parameters for production process

|𝑉 | number of nodes
|𝐸 | number of edges
𝑑max maximum node degree
𝐿fiber total fiber lengths
|𝑉𝑢 | number of upper face nodes

graph
|𝑉𝑙 | number of lower face nodes
𝐿1 (𝑃1) minimal edge count of all paths from 𝑉𝑢 to 𝑉𝑙
𝐿2 (𝑃2) minimal fiber lengths of all paths from 𝑉𝑢 to 𝑉𝑙
𝐿3 (𝑃2) Euclidean length of weighted shortest path 𝑃2
𝐷1, 𝐷2, 𝐷3 {mean, median, sum} of differences between

edge-wise fiber and Euclidean lengths
|𝐶min | size of minimum edge cut separating 𝑉𝑢 and 𝑉𝑙

stretch 𝑆𝑐1 , 𝑆
𝑐
2 , 𝑆

𝑐
3 , 𝑆

𝑐
4 , 𝑆

𝑐
5 {mean, std, median, max, sum} of stretching

distance for 𝑐 ∈ {1, 1.05, 1.1, . . . , 1.5}

accompanying features is fast, the computation of the stress-strain curves is very
time-consuming as it requires solving large-scale dynamical systems on the indi-
vidual fiber structure samples. To account for the systems’ stiffness, we employ an
implicit Euler scheme with variable step size control. For the resulting nonlinear
equation systems, we use an exact Newton method with analytical Jacobian and
Armijo’s line search. An explicit Euler step provides a suitable initial guess for
warm start. The ODE-solver typically requires between 24 and 48 hours for a single
instance, making it the bottleneck for building datasets. Both the fiber graph genera-
tion as well as the tensile strength simulations are performed in parallel on a machine
with 88 CPU cores (Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz) and 792 GB
RAM running Ubuntu 18.04.6 using Matlab (R2019a).

For 43 parameter combinations, we generate 25 sample graphs each, totaling
1.075 graphs. On average, each graph contains 51.507 nodes (standard deviation
±2.182) and 198.744 edges (±29.996). We randomly select six of our parameter
combinations and compute the 25 stress-strain curves associated to the graphs (set 1,
fully labeled), while for all other combinations we compute only a single stress-strain
curve for one of the corresponding samples (set 2, single labeled) because of the high
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Table 4: Composition of dataset.

Set 1:
fully labeled

Set 2:
single labeled

Set 3:
unlabeled

Total

Graphs 6×25 37×25 2.000 ×1 3.075
Stress-strain curves 6×25 37×1 – 187

cost of the ODE-solver. The dataset thus includes 187 supervised/monitored samples
(6× 25 samples + 37× 1 sample) across 43 different parameter combinations. The
graphs and corresponding stress-strain curves serve as ground truth examples for
supervised learning. Additionally, set 3 (unlabeled) contains 2.000 graphs for 2.000
parameter combinations, cf., Table 4. Given an unseen parameter combination,
our goal is to predict the average behavior as well as a range of deviation of the
resulting stress-strain curves as close as possible to the ground truth. The data that
we generated and used for the results shown in this paper is available for download
at https://github.com/pwelke/random-nonwoven-fibers.

3 Linear Regression-based Predictive Models

This section deals with the two multivariate linear regression models recently pro-
posed by Antweiler et al. [2]: the PP-model (production parameter-based) and the
FGF-model (fiber graph feature-based). We explain the underlying modeling ideas
(Section 3.1) and discuss the advantages of the model variants by means of a per-
formance study (Section 3.2). For this purpose, we investigate the goodness of fit
for the prediction of the mean stress-strain curves as an example. Both models aim
at avoiding the high computational effort associated to the TSS-model. In the fol-
lowing the TSS-model is represented by the random field S : U𝑎𝑑 ×Ω → Y with
set of admissible production parameters U𝑎𝑑 ⊂ R𝑛, 𝑛 = 4 (cf., Table 2) and set of
stress-strain curve parametrizations Y ⊂ R𝑟 , 𝑟 = 2, cf., (1).

3.1 Linear Regression and Monte Carlo Simulations

PP-model. The PP-model directly relates the production parameters to the stress-
strain curve parametrizations using multiple multivariate linear regression, cf., [16].
Given 𝑘 ∈ N observation pairs {(𝒖𝑖 , 𝒚𝑖)}𝑘𝑖=1, consisting of input (production pa-
rameters) 𝒖𝑖 ∈ R𝑛 and output (random stress-strain curve parametrizations) 𝒚𝑖 =
S(𝒖𝑖 ,𝜔𝑖) ∈ R𝑟 , the model assumes the relation

𝒚𝑖 = 𝒃P +𝑩𝑇P,1𝒖𝑖 +𝜺P,𝑖 for 𝑖 = 1, . . . , 𝑘,

https://github.com/pwelke/random-nonwoven-fibers
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where the errors 𝜺P,𝑖 : Ω → R𝑟 account for the stochastic nature of the tensile
strength simulation framework. They are assumed to be independent and identically
distributed (i.i.d.) with E[𝜺P,𝑖] = 0 and Cov[𝜺P,𝑖] = 𝚺P ∈ R𝑟×𝑟 . The task is to iden-
tify the unknown intercept 𝒃P ∈ R𝑟 and regression coefficients 𝑩P,1 ∈ R𝑛×𝑟 . The
regression model for 𝑩P = [𝒃P,𝑩

𝑇
P,1]𝑇 ∈ R1+𝑛×𝑟 can be summarized as

𝒀 =𝑼𝑩P +𝑬P,

𝒀 =


𝒚𝑇1
𝒚𝑇2
...
𝒚𝑇𝑘


, 𝑼 =


1 𝒖𝑇1
1 𝒖𝑇2
...
...

1 𝒖𝑇𝑘


, 𝑬P =


𝜺𝑇P,1
𝜺𝑇P,2
...

𝜺𝑇P,𝑘


with response 𝒀 ∈ R𝑘×𝑟 , design matrix 𝑼 ∈ R𝑘×1+𝑛, and error matrix 𝑬P ∈ R𝑘×𝑟 .
By the assumptions on the individual errors Cov[(𝑬P)·,𝑖 , (𝑬P)·, 𝑗 ] = (𝚺P)𝑖, 𝑗 I𝑘 holds
true, for 𝑖, 𝑗 = 1, . . . , 𝑟 and the identity I𝑘 ∈ R𝑘×𝑘 . Thus, the individual observations
are independent, but correlations between the responses are allowed.

A linear, unbiased estimator of 𝑩P is the well-known least-squares estimator
�̂�P = (𝑼𝑇𝑼)−1𝑼𝑇𝒀 . Considering the decomposition �̂�P = [�̂�P, �̂�

𝑇

P,1]𝑇 yields the
predictor

�̂�P (𝒖) = �̂�P + �̂�
𝑇

P,1𝒖, with �̂�P : R𝑛 → R𝑟 , (2)

that maps the production parameters to the associated mean stress-strain curve
parametrization. If the errors are assumed to be multivariate normally distributed,
i.e., 𝜀P,𝑖 ∼N(0,𝚺P), the maximum likelihood estimator of the covariance matrix 𝚺P
is given by

𝚺P =
1
𝑘
𝑬
𝑇

P 𝑬P, 𝑬P = 𝒀 −𝑼�̂�P, (3)

where 𝑬P are the residuals between actual observation and prediction.
The PP-model approximates the TSS-model as S ≈ ŜP, which is specified by

ŜP (𝒖, ·) ∼ N ( �̂�P (𝒖),𝚺P) for all 𝒖 ∈ U𝑎𝑑 . Note that �̂�P only predicts the mean stress-
strain curve parametrization. However, if we use the additional distributional as-
sumptions, we can resample multiple stress-strain curve parametrizations and insert
them in the constant-quadratic ansatz (1). Averaging over the resulting curves yields
then a prediction of the mean stress-strain curve.

FGF-model. The FGF-model, unlike the PP-model, builds on predicting the stress-
strain curve parametrizations for individual fiber graphs. This requires the generation
of random fiber structure samples, from each of which 𝑚 ∈ N features (i.e., com-
binations of production parameters, topological graph and stretch features, as listed
in Table 3) are extracted. We view fiber graph generation and feature extraction as
a random field M : U𝑎𝑑 ×Ω → R𝑚. Then, the FGF-model relates production pa-
rameters and (fiber graph) features to the associated stress-strain curve parametriza-
tions for which we again consider a multiple multivariate linear regression model.
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Given 𝑘 ∈N observation tuples {(𝒖𝑖 , 𝒗𝑖 , 𝒚𝑖)}𝑘𝑖=1, consisting of production parameters
𝒖𝑖 ∈ R𝑛, random features 𝒗𝑖 =M(𝒖𝒊 ,𝜔𝑖) ∈ R𝑚 and associated1 stress-strain curve
parametrizations 𝒚𝑖 = S(𝒖𝑖 ,𝜔𝑖) ∈ R𝑟 , it reads

𝒚𝑖 = 𝒃F +𝑩𝑇F,1𝒖𝑖 +𝑩𝑇F,2𝒗𝑖 +𝜺F,𝑖 for 𝑖 = 1, . . . , 𝑘 ,

with intercept 𝒃F ∈ R𝑟 and regression coefficients 𝑩F,1 ∈ R𝑛×𝑟 ,𝑩F,2 ∈ R𝑚×𝑟 . The as-
sumptions on the errors are the same as those of the PP-model, with covariance matrix
Cov[𝜺F,𝑖] = 𝚺F. However, the errors are here motivated as simple regression errors
and not as sampling errors, as the FGF-model describes the input-output behavior
of the deterministic tensile strength simulations. The model can be summarized as

𝒀 =𝑾𝑩F +𝑬F,

with 𝑩F = [𝒃F,𝑩
𝑇
F,1,𝑩

𝑇
F,2]𝑇 and 𝑾 = [𝑼,𝑽] using 𝑽 = [𝒗1, . . . , 𝒗𝑘]𝑇 . Again, the task

is to identify intercept and regression coefficients, for which the unbiased linear
least-squares estimator is given by �̂�F = (𝑾𝑇𝑾)−1𝑾𝑇𝒀 . Thus, we obtain the linear
predictor

�̂�F (𝒖, 𝒗) = �̂�F + �̂�
𝑇

F,1𝒖 + �̂�
𝑇

F,2𝒗, with �̂�F : R𝑛 ×R𝑚 → R𝑟 , (4)

that maps a given set of production parameters and fiber graph features to the stress-
strain curve parametrization associated to the respective fiber graph.

The FGF-model approximates the TSS-model by the coupling of the predictor
�̂�F with the random field M, i.e., S ≈ ŜF where ŜF (𝒖, ·) ∼ �̂�F (𝒖,M(𝒖, ·)) for all
𝒖 ∈ U𝑎𝑑 . As we have no analytical insights in the behavior of M, this coupling has
to be treated as a stochastic black box. To obtain a predictor of the mean stress-strain
curve we have to conduct Monte-Carlo simulations where we repeatedly sample fiber
graphs, predict their stress-strain curves and average over the results.

Remark 1 The case where only fiber graph features are used for predictions in the
FGF-model can be covered by choosing �̂�F,1 = 0. The corresponding least-squares
estimator is [�̂�F, �̂�F,2] = (�̃�𝑇�̃�)−1�̃�

𝑇
𝒀 with design matrix �̃� = [1,𝑽] ∈ R𝑘×1+𝑚

containing an extra column of ones to account for the intercept term.

Remark 2 We state the closed form solution of the least-square estimator for con-
venience. In practice, we avoid solving the ill-conditioned normal equations and
instead solve the associated least-squares optimization problem via pseudo inverse
by means of a singular value decomposition.

1 The explicit usage of a fixed production parameter combination 𝒖𝑖 together with a fixed proba-
bilistic state 𝜔𝑖 emphasizes that graph features and stress-strain curve parametrization are obtained
from the same fiber graph sample (by simulation and feature extraction).
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3.2 Numerical Results

Experimental Setting. To assess the predictive quality for inferring the mean stress-
strain curves, we perform a leave-one-out cross-validation (LOOCV) across all 43
production parameter combinations contained in the labeled datasets 1&2 (Table 4).
In each run, we separate the data into a training set containing the samples of
42 parameter combinations and a test set containing the samples of the remaining
parameter combination. Hence, the test set always contains 25 fiber graph sam-
ples, where either one (set 2) or all of them (set 1) are labeled with a stress-strain
curve parametrization. The training set is used to fit the PP-model and the FGF-
model. For the latter one, we compare different combinations of the feature groups
(listed in Table 3). During inference, the fitted models use the production parame-
ters without/with fiber graph features as input to predict the mean stress-strain curve
parametrizations (PP-model) or the stress-strain curve parametrizations associated to
individual fiber graphs (FGF-model). For the FGF-model, the stress-strain curves of
the 25 fiber graphs in the test set are reconstructed using the constant-quadratic ansatz
(1). Averaging these curves yields a mean stress-strain curve prediction. For the PP-
model, the procedure differs slightly. As it only predicts mean stress-strain curve
parametrizations we use the covariance estimate (3) on top of the predicted mean
parametrization (2) to resample 1.000 stress-strain curve parametrizations. Then,
averaging over the associated stress-strain curves that are reconstructed by means of
the constant-quadratic ansatz provides a prediction of the mean stress-strain curve.

For each production parameter combination, we compare the predicted mean
curve to the ground truth curve. Using parameter combinations with multiple train-
ing samples (set 1), we compare the means of the predicted and the ground truth
curves. For the single-sample parameter combinations (set 2) we take all 25 (mainly
unlabeled) graph samples and check how much the ground truth curve of the sin-
gle labeled sample deviates from the mean of the predicted curves that our model
produces. For assessment, we use the test set to calculate the coefficient of determi-
nation, 𝑅2, and the adjusted coefficient of determination, �̄�2, between the means of
predicted and ground truth curve evaluations. This provides a measure of the model
fit that is independent of the strain. Thus, to compute the 𝑅2 values, we evaluate each
curve (predicted and ground truth) at𝐾 (=1.000) equally distanced strain points in the
interval [0,0.5] and take the means over the values at each strain point. In every run,
this yields the predicted means ˆ̄𝑦1, . . . , ˆ̄𝑦𝐾 as well as the observed means �̄�1, . . . , �̄�𝐾 ,
from which we compute the (adjusted) coefficient of determination through

𝑅2 = 1−
∑𝐾
𝑖=1 �̄�𝑖 − ˆ̄𝑦𝑖∑𝐾
𝑖=1 �̄�𝑖 − ¯̄𝑦

and �̄�2 = 1− (1−𝑅2) 𝐾 −1
𝐾 −𝑚−1

,

where ¯̄𝑦 =
∑𝐾
𝑖=1 �̄�𝑖 and𝑚 is the number of features used by the predictive model. Given

the variability of the samples within the same parameter combination, this validation
provides a robust estimation of the model quality. While the 𝑅2 value is a default
evaluation score for regression tasks, we supplement it with the �̄�2 value which
penalizes for larger numbers of selected attributes within a model. Furthermore,
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Table 5: Regression results for the baseline, the constant-quadratic ansatz, the PP-
model and the FGF-model. Listed are the medians of the 𝑅2 and �̄�2 values observed
during the LOOCV as well as the OTLoss.

Model Feature set Median 𝑅2 ↑ Median �̄�2 ↑ OTLoss ↓
baseline - 0.3928 - -
constant-quadratic - 0.999927 - -

PP-model param 0.7967 0.7958 292.56
FGF-model stretch 0.9730 0.9714 111.77
FGF-model graph 0.9737 0.9733 99.65
FGF-model param + stretch 0.9723 0.9705 85.24
FGF-model param + graph 0.9717 0.9712 82.62
FGF-model graph + stretch 0.9760 0.9742 71.44
FGF-model param + graph + stretch 0.9778 0.9761 85.71

we perform an Optimal Transport (OT) optimization between the sets of curves
embedded in R𝐾 . It computes a mapping between two sets of points, that is minimal
in terms of total work, i.e. transportation of mass. For optimization, the Wasserstein
distance for discrete distributions is used. In comparison to the median 𝑅2 score, the
OT score penalizes substantial differences between individual predicted and actual
curves to a larger degree. With this additional score, we can adequately assess the
difference in distribution between prediction and ground truth curves.

As baseline, in each run of the LOOCV we also compare the (mean) ground truth
curve to the curve obtained by feeding the constant-quadratic ansatz with the means
of the parametrizations in the training set. Computing the corresponding 𝑅2 values
yields a simple comparative value to beat. Moreover, we include a comparison
of the ground truth curves to that obtained by means of the best found constant-
quadratic curve fits to get an idea of the suitability of the utilized stress-strain curve
model class. Corresponding code and experimental data are available at https:
//github.com/pwelke/random-nonwoven-fibers and as a reproducible run
on CodeOcean https://codeocean.com/capsule/7514050/tree/v1 [see 3].

Results and Discussion. The main results for the prediction of the mean stress-
strain curves are illustrated in Table 5. It reports the median (adjusted) coefficients
of determination, 𝑅2 and �̄�2, observed during the LOOCV. Most importantly, the
results show that the constant-quadratic ansatz is a well-chosen approximation for
the ground truth stress-strain curves, which is expressed by a median coefficient of
determination that is very close to 1. Further, we note that both, the PP-model and
the FGF-model, outperform the identified baseline by a clear margin. The fiber graph
feature-based approach in particular works surprisingly well and delivers significant
improvements over the simple production parameter-based approach. With regard to
different feature set combinations, it should be emphasized that a union of topological
graph and stretch features already achieves a remarkable performance with a median
coefficient of determination of 𝑅2 = 0.9760, calculated between the mean predicted

https://github.com/pwelke/random-nonwoven-fibers
https://github.com/pwelke/random-nonwoven-fibers
https://codeocean.com/capsule/7514050/tree/v1
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Fig. 5: Feature importance values for the FGF-model (graph + stretch) to predict 𝛼
(top) and 𝛽 (bottom) with 𝒚 = (𝛼, 𝛽). Topological graph (left) and stretch features
(right). To reduce visual clutter, we display the five stretch features with biggest
and smallest mean values, respectively. For reasons of comparison, the explanatory
variables are scaled before training (min-max scaling).

and the mean ground truth curves (highlighted in bold in Table 5). This indicates that
the topological and geometric structure of the fiber graphs already encodes much
of the tensile strength behavior under vertical load. It should be noted, that we also
compared a lasso and ridge regularization for the parameter estimation, leading to
no significant change in results.

A major advantage of using simple regression models for prediction is the inter-
pretability of the individual regression coefficients. In the following, we investigate
the feature importance exemplarily for the FGF-model (graph + stretch) that uses the
union of graph and stretch features for prediction. The regression weights observed
during the 43-fold LOOCV are displayed in Fig. 5. Apparently, high impact features
differ between 𝛼 and 𝛽 prediction. Generally, stretch features display a large impact,
especially 𝑆𝑐1 (mean) and 𝑆𝑐5 (sum) for larger values of the overstretching factor 𝑐.
Examining the graph feature importance discloses the following relationships: For
the prediction of 𝛼 the negative regression coefficient values with respect to |𝐸 | indi-
cate that as the number of edges increases, the quadratic behavior of the stress-strain
curves sets in earlier (𝛼 is smaller). In line with that, the positive coefficient values for
the prediction of 𝛽 indicate that an increase in |𝐸 | also causes the quadratic incline
to grow quicker (𝛽 is bigger). This underlines the intuition that more fiber connec-
tions result in firmer materials (higher tensile strength). Similar relationships can be
observed for the maximum degree 𝑑max and the size of the minimum edge cut |𝐶 |min,
as higher feature values are likely to represent a higher fiber structure connectivity.
Opposed to that 𝐿3 (𝑃2), the Euclidean length along the weighted shortest path in
terms of fiber length, exhibits positive coefficient values for the prediction of 𝛼 and
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negative coefficient values for the prediction of 𝛽 (reversed effect). An explanation
is that at high 𝐿3 (𝑃2) values, the shortest path has more leeway to be pulled apart
during the tensile strength experiment without contributing to the tensile strength
(lower tensile strength). The same applies to 𝐿1 (𝑃1), the length of the shortest path
in terms of edge count. Comparable interpretations cannot be made for all features,
since some of the them exhibit reciprocal relationships. Overall, the coefficients are
stable over different parameter combinations, indicating a robust model fitting.

In comparison to the TSS-model, the regression models achieve a significant
speedup. The time needed to compute a stress-strain curve for a sample generated
by an unseen parameter combination is reduced by the FGF-model by more than
three orders of magnitude, from 24 to 48 hours to two minutes per sample. As both
workflows can be executed in a parallelized fashion, the speedup is of a factor greater
than 1.000.

4 Sequential Predictive Regression Model

The prediction quality of the FGF-model is significantly better than that of the PP-
model, but is brought by a costly underlying Monte-Carlo simulation procedure.
Thus, the performance of the FGF-model crucially depends on the fiber graph gen-
eration. The remarkable difference in the prediction quality suggests some nonlinear
relations between production parameters and fiber graph features. Such relationships
are overlooked when using a purely linear model, as is the case with the PP-model.
To capture the nonlinearities, we propose an intermediate multivariate polynomial
regression model to infer mean topological graph features. This is a fairly straightfor-
ward approach, cf. [21, 24]. Alternatives may include multivariate adaptive regres-
sion splines (MARS) [13] or radial basis functions [32]. However, in our application,
we observe already very good predictive results with polynomials of a total degree
up to 5. To enable the prediction of mean stress-strain curve parametrizations we
couple the intermediate model with an errors-in-variables model (Section 4.1). The
quality of the resulting predictive pipeline, referred to as production parameter and
mean fiber graph feature-based predictive model (PP-MGF-model), is investigated in
comparison to the previously discussed models in Section 4.2. The PP-MGF-model
is new, in view of the existing literature, and represents a good compromise between
the efficiency of the PP-model and the predictive accuracy of the FGF-model.

4.1 Coupled Polynomial Regression and Errors-In-Variabels Model

The underlying assumption of the intermediate multivariate polynomial regression
model is that the production parameters and the individual graph features obey a
perturbed polynomial relation. Let Γ𝑔,𝑛 denote the set of 𝑛-dimensional multi-indices
up to total degree 𝑔 ∈ N with cardinality 𝑙, i.e.,
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Γ𝑔,𝑛 =
𝜸 ∈ N𝑛0 : |𝜸 | =

𝑛∑
𝑗=1
𝛾 𝑗 ≤ 𝑔

 , 𝑙 = |Γ𝑔,𝑛 | =
(
𝑛+𝑔
𝑔

)
and assume an arbitrary enumeration 𝜸1, . . . ,𝜸𝑙 of the multi-indices such that
𝜸1 = (0, . . . ,0). Then the multivariate polynomials 𝑞 𝑗 : R𝑛 → R, 𝑗 = 1, . . . ,𝑚, are
defined through

𝑞 𝑗 (𝒖) =
𝑙∑
𝑖=1
𝑐𝑖 𝑗𝒖

𝜸𝒊 , where 𝒖𝜸𝑖 =
𝑛∏
𝑟=1

𝑢
𝛾𝑖𝑟
𝑟 ,

with polynomial coefficients 𝑐𝑖 𝑗 ∈ R and factor interactions between the individ-
ual production parameters 𝒖𝜸𝑖 ∈ R. Given 𝑠 ∈ N observation pairs {(𝒖𝑖 , 𝒗𝑖)}𝑠𝑖=1,
consisting of production parameters 𝒖𝑖 ∈ R𝑛 and random fiber graph features
𝒗𝑖 = M(𝒖𝒊 ,𝜔𝑖) ∈ R𝑚, the intermediate polynomial regression model assumes the
relation

𝒗𝑖 = 𝒒(𝒖𝑖) +𝜺R,𝑖 , 𝒒(𝒖) = (𝑞1 (𝒖), . . . , 𝑞𝑚 (𝒖))𝑇 = 𝑪𝑇 (𝒖𝜸1 , . . . ,𝒖𝜸𝑙 )𝑇

with (unknown) coefficient matrix 𝑪 ∈ R𝑙×𝑚, (𝑪)𝑖, 𝑗 = 𝑐𝑖 𝑗 . Analogously to the basic
linear regression model, the errors 𝜺R,𝑖 are assumed to be i.i.d. with E[𝜺R,𝑖] = 0 and
Cov[𝜺R,𝑖] =𝚺R, for 𝑖 = 1, . . . , 𝑠. The task is to identify𝑪 in order to simultaneously fit
a multivariate polynomial of (total) degree 𝑔 for each of the 𝑚 (fiber graph) features.
It is convenient to think of the 𝑙 possible factor interactions as independent variables.
This allows to reformulate the model as a multiple multivariate linear regression
model, since linearity is only required with respect to the regression coefficients 𝑐𝑖 𝑗 .
Thus, let 𝑥𝑖 𝑗 = 𝒖

𝜸 𝑗

𝑖 be the set of explanatory variables, then we get

𝑽 = 𝑿𝑪 +𝑬R

with design matrix 𝑿 ∈ R𝑠×𝑙 ((𝑿)𝑖, 𝑗 = 𝑥𝑖 𝑗 , containing the factor interactions), re-
sponse matrix𝑽 ∈ R𝑠×𝑚 and error matrix 𝑬R ∈ R𝑠×𝑚. Note that no intercept must be
included for setting up the design matrix 𝑿, since 𝑥𝑖1 = 𝒖

𝜸1
𝑖 = 1 for 𝑖 = 1, . . . , 𝑠. Espe-

cially, for the case 𝑔 = 1 the polynomial regression model includes the classic multiple
multivariate linear regression model with intercept. In view of the reformulation, an
adequate estimator for 𝑪 is given by the least-squares estimator 𝑪 = (𝑿𝑇𝑿)−1𝑿𝑇𝑽
which provides a (non-linear) predictor of the mean fiber graph features for given
combinations of production parameters

�̂�(𝒖) = 𝑪
𝑇 (𝒖𝜸1 , . . . ,𝒖𝜸𝑙 )𝑇 . (5)

The objective is now to predict the expected stress-strain curve parametrizations
based on the production parameters and mean fiber graph features. Assuming a linear
relation, which has been shown to be accurate in the case of the FGF-model, the
functional relation is as follows
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𝒚𝑖 = 𝒃 +𝑩𝑇1 𝒖𝑖 +𝑩𝑇2 �̂�(𝒖𝑖) +𝜺𝑖 , for 𝑖 = 1, . . . , 𝑘 . (6)

Here 𝜺𝑖 : Ω → R𝑟 models the deviation from the mean parametrization caused by
the stochastic nature of the simulation framework. To fit the relationship (6) to data,
we replace the predictor �̂� with the variable �̄� representing the mean features. In
this context, we note that sampling data to fit the model using the TSS-model is
not feasible, because the mean graph features �̄� are not directly observable. Instead,
we only have access to observations tuples {(𝒖𝑖 , 𝒗𝑖 , 𝒚𝑖)}𝑘𝑖=1 composed of production
parameters 𝒖𝑖 ∈ R𝑛, random features 𝒗𝑖 = M(𝒖𝑖 ,𝜔𝑖) ∈ R𝑚 and associated stress-
strain curve parametrizations 𝒚𝑖 = S(𝒖𝑖 ,𝜔𝑖) ∈ R𝑟 . However, the fiber graph features
can be thought of as perturbed realizations of �̄�, i.e., 𝒗𝑖 = �̄�𝑖 + 𝜹𝑖 . Thereby, 𝜹𝑖 ∈ R𝑚
represents the error of measuring �̄�𝑖 . Thus, in addition to the conventional errors in
the regression equation, we assume errors in the explanatory variables as well. This
results in the usage of the generalized errors-in-variables model [29] which assumes
the relation

𝒚𝑖 = 𝒃 +𝑩𝑇1 𝒖𝑖 +𝑩𝑇2 �̄�𝑖 +𝜺𝑖 , (7a)
𝒗𝑖 = �̄�𝑖 + 𝜹𝑖 . (7b)

In (7) the observable variables are 𝒚𝑖 , 𝒖𝑖 and 𝒗𝑖 , whereas �̄�𝑖 is referred to as la-
tent variable. Analogously to the multivariate linear regression model, the joint
errors 𝝍𝑖 = (𝜹𝑇𝑖 ,𝜺𝑇𝑖 )𝑇 are assumed to be i.i.d. with E[𝝍𝑖] = 0 and Cov[𝝍𝑖] = 𝚺, for
𝑖 = 1, . . . , 𝑘 . Then the task is to estimate 𝑩 = [𝒃,𝑩𝑇1 ,𝑩𝑇2 ]𝑇 . By applying the con-
ventional least-squares estimator �̂� = (𝑾𝑇𝑾)−1𝑾𝑇𝒀 (cf., Section 3.1), we neglect
the measurement error described by (7b) during estimation. Even though it is well
known that the least-squares estimator is not a consistent estimator for 𝑩 in the
errors-in-variables model, it gives good results for prediction [5, 29].

Eventually, the coupling of the feature predictor (5) from the polynomial re-
gression model with the fitted errors-in-variables model yields a mapping from the
production parameters to the mean stress-strain curve parametrizations. It is deter-
mined by the intercept �̂� and the coefficient matrices �̂�1, �̂�2,𝑪 according to the
previous explanations and results in the (nonlinear) predictor

�̂�(𝒖) = �̂� + �̂�
𝑇

1 𝒖 + �̂�
𝑇

2 𝑪
𝑇 (𝒖𝜸1 , . . . ,𝒖𝜸𝑙 )𝑇 , with �̂� : R𝑛 → R𝑟 . (8)

A very convenient property of this coupling is that we can use different datasets for
fitting the polynomial regression model and for fitting the errors-in-variables model,
cf., Fig. 2. Particularly, since tensile strength simulations (computational bottleneck)
are not necessary, the dataset for fitting the polynomial regression model can be
chosen much larger (𝑠 � 𝑘). This is appropriate in order to account for the larger
number of explanatory variables.

Conclusively, to approximate the input-output behavior of the TSS-model, we
need distributional assumptions for the joint error behavior. Again, we rely on a
multivariate normal distribution (similar to the PP-model) and determine a covari-
ance estimate 𝚺 analogously to (3). Then, the PP-MGF-model behaves as S ≈ Ŝ,
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where Ŝ(𝒖, ·) ∼ N ( �̂�(𝒖),𝚺) for all 𝒖 ∈ U𝑎𝑑 . Predicting the mean stress-strain curve
requires resampling, as it is the case for the PP-model.

4.2 Numerical Results

Experimental Setting. Using dataset 3 (Table 4), we investigate the relation be-
tween production parameters and topological graph features by means of a 5-fold
cross validation. Therefore, the set is randomly divided in 5 subsets, containing 400
samples each. In each run, one of the subsets is used as test set, while the remaining
ones are used for training. We train the multivariate polynomial regression model
for a total degree of 𝑔 ∈ {1, . . . ,5}, using a least-squares estimator for fitting the re-
gression coefficients. To assess the model quality, we compare the median adjusted
coefficients of determination, �̄�2, observed throughout the cross-validation.

Subsequently, we investigate the quality of the PP-MGF-model for predicting the
mean stress-strain curves. To achieve a fair comparison with regard to the PP-model
and the FGF-model, we again perform a leave-one-out cross-validation (LOOCV)
across the 43 production parameter combinations (dataset 1&2), as described in Sec-
tion 3.2. To train the polynomial regression model, we use all fiber graphs (labeled
and unlabeled) associated to the training set. Thereby, we test polynomial relations of
the degree 𝑔 ∈ {2, . . . ,6}. To train the errors-in-variables model, we use the labeled
training data only. For both models, we employ a least-squares fit. During inference
on the test set, the fitted models use the production parameter combinations as input in
order to predict the mean stress-strain curve parametrizations. To obtain a prediction
of the mean stress-strain curve we resample 1.000 stress-strain curve parametriza-
tions, reconstruct the associated curves using the constant-quadratic ansatz and then
average over them (similar to the PP-model). In comparing the predicted mean stress-
strain curves to the ground truth curves, we follow the descriptions from Section 3.2.

Results and Discussion. The main results of the described 5-fold cross validation are
summarized in Table 6. We observe that the adjusted �̄�2 values, acting as a measure
of model fit, peak for a degree of 3 and 4. Further increasing the polynomial degree
for regression leads to a deterioration in terms of the adjusted �̄�2 value. Since the
case of polynomial degree 1 resembles the linear model, an improvement by moving
to a higher polynomial degree is apparent. The high �̄�2 values, which are even above
0.9 in most cases, are particularly astonishing and justify the use of a polynomial
model for the mean fiber graph feature prediction.

The results regarding the 43-fold LOOCV are summarized in Table 7. The pre-
dictive results of the PP-MGF-model outperform that of the PP-model by a clear
margin and almost reach the predictive quality of the FGF-model. We note that this
is achieved without the need of a Monte-Carlo simulation procedure. Particularly,
a polynomial fit of total degree 5 works best for the relation between production
parameters and topological graph features. For higher degrees, we observe a dete-
rioration of the �̄�2 value, which is probably related to overfitting. We note that we
also tested fitting the errors-in-variables model by means of a generalized total-least-
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Table 6: Results of the 5-fold cross-validation: Median of �̄�2 values for the prediction
of the topological graph features and for different polynomial degrees.

Feature Degree 1 Degree 2 Degree 3 Degree 4 Degree 5

|𝑉 | 0.8526 0.9698 0.9812 0.9809 0.9741
|𝐸 | 0.9552 0.9852 0.9893 0.9892 0.9868
|𝑉𝑢 | 0.8465 0.9344 0.9460 0.9460 0.9361
|𝑉𝑙 | 0.8596 0.9416 0.9499 0.9466 0.9350
𝑑max 0.4303 0.5861 0.6241 0.6352 0.5567
𝐿fiber 0.9551 0.9823 0.9883 0.9880 0.9852
𝐿1 (𝑃1) 0.8819 0.9448 0.9469 0.9423 0.9329
𝐿2 (𝑃2) 0.8799 0.9403 0.9393 0.9406 0.9261
𝐿3 (𝑃2) 0.8761 0.9356 0.9369 0.9358 0.9190
𝐷1 0.8776 0.9536 0.9680 0.9687 0.9437
𝐷2 0.7835 0.9292 0.9638 0.9652 0.8153
𝐷3 0.9460 0.9842 0.9897 0.9891 0.9851

|𝐶min | 0.8494 0.9150 0.9311 0.9395 0.9223

Table 7: Regression results of the LOOCV comparing the PP-model, the FGF-model
and the PP-MGF-model: Median of observed 𝑅2 and �̄�2 values as well as OT loss.

Model Approach Median 𝑅2 ↑ Median �̄�2↑ OTLoss ↓
PP-model param 0.7967 0.7958 292.56

PP-MGF-model Degree 2 0.9282 0.9258 125.37
PP-MGF-model Degree 3 0.9428 0.9396 130.01
PP-MGF-model Degree 4 0.9427 0.9372 121.63
PP-MGF-model Degree 5 0.9584 0.9515 93.43
PP-MGF-model Degree 6 0.9572 0.9447 110.16

FGF-model param + graph 0.9717 0.9712 82.62

squares estimation. However, this did not improve the prediction quality, for which
the results presented are limited to the use of a conventional least-squares estimator.

In comparison to the TSS-model, the time needed to compute a stress-strain curve
for a sample generated by an unseen parameter combination is reduced by more than
six orders of magnitude, from 24-48 hours to 10 milliseconds per sample. In that, the
PP-MGF-model is similar to the PP-model and more than three orders of magnitude
better than the FGF-model in terms of computation time. However, note that the
training of the PP-MGF-model is slightly more expensive than that of the other
regression models, since it depends on a large amount of additional graph samples
to fit the nonlinear relations between production parameters and graph features.

Summing up, the PP-MGF-model is cheap to evaluate and has excellent predictive
quality, making it suitable for nonwoven material design. To conclude our discussion
we refer to Fig. 6 which shows the predicted mean stress-strain curves of all models
included in the predictive model hierarchy. Although isolated instances also led to
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Fig. 6: Mean stress-strain curve predictions resulting from our predictive model
hierarchy. The exemplarily illustrated instances are observed during the LOOCV for
two fully labeled test sets (belonging to set 1).

other predictive gradations, the plots are representative of the observable results of
the models and reflect the results of the numerical experiments performed.

5 Conclusion and Future Work

This work demonstrates the power of informed machine learning in predicting mate-
rial properties. We developed a regression-based model hierarchy for predicting the
tensile strength behavior of nonwovens. While direct linear regression on the pro-
duction parameters lacks accuracy (PP-model) and linear regression using individ-
ual fiber graphs requires time-consuming Monte-Carlo simulations (FGF-model), a
coupling of a polynomial model with a linear (errors-in-variables) model (PP-MGF-
model) has proven to be a good compromise combining the best of both model
variants. By reducing the computation time by several orders of magnitude, a high
accuracy of the prediction results (compared to the ground truth) is achieved. Thus,
the PP-MGF-model promises to be of great benefit as a surrogate model for non-
woven material design, which is a field for further work. Our approach incorporates
extensive domain knowledge into the modeling process at the points of training data
and hypothesis set via simulation results and algebraic equations from scientific and
expert sources. To our knowledge, our approach is completely new in the context of
nonwoven material design.
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