GNNs Don’t Need Backprop

Benoit Goupil', Fabian Jogl?, Pascal Welke®?

1- LIX (Ecole Polytechnique, IP Paris, CNRS)
2- TU Wien 3- Lancaster University Leipzig

Abstract. We propose an alternative training method for graph neural
networks (GNNs) that does not require gradient information. Instead, we
sample randomly initialized models and select the one that maximizes an
alignment score between its graph embedding space and the label space.
Our method is easy to parallelize on CPU and GPU architectures and
achieves competitive results with state-of-the-art stochastic gradient de-
scent training on several graph classification benchmarks.

1 Introduction

We propose a novel way to train graph neu-
ral networks (GNN) for classification tasks

that is based on sampling a well-aligned ran-

domly initialized encoder. A common way
to describe what artificial neural networks
do is that they learn “suitable” latent repre-
sentations that capture the relevant aspects

of input data with respect to a given learn-

ing task. In this context, learning usually v e G w oo
refers to the minimization of some loss func- ———

Epoch
s

Accuracy
.

tion via stochastic gradient descent (SGD) 5 & 3 g5 § 8
variants, which indirectly adjusts latent rep-
resentations. In classification problems, well-
trained models exhibit neural collapse [6, 10]:
the reduction of intra-class variance of acti-
vations and the convergence to an equiangu-
lar simplex tight frame in final layers of the
model. We propose an alignment measure
of latent representations and target labels that is maximized by representations
that exhibit neural collapse and that empirically correlates with training and test
performance (see Figure 1) of graph neural networks (GNN) trained with SGD.
Then we ask: Does directly optimizing this measure result in well-performing
models?

We answer this question positively by using a simple sampling approach
that selects the most aligned encoder from a user-defined number of randomly
initialized GNN encoders. In a second step, we train a decoder based on the
frozen encoder to obtain a model for the learning task. This yields competitive
performance to full end-to-end training with SGD while avoiding the expense of
backpropagating through the whole architecture. Since the alignment evaluation
is completely independent for different encoders it can be parallelized at scale,

Sl

Fig. 1: A GNN trained with SGD
on the Mutagenicity dataset.
Over time, our alignment score
ALI increases correlating with an
increase in accuracy.

opening the door to large-scale encoder search and offering a practical alternative
to traditional optimization pipelines.

2 Related Work

To the best of our knowledge, there has been limited investigation into the per-
formance of graph neural networks that are not trained with SGD. Pasa et al. [7]
introduce a novel gated GNN architecture that can be trained without backprop-
agation. Their approach, however, does not apply to existing graph neural net-
work architectures that use arbitrary element-wise nonlinearities on neurons. A
few approaches use randomly initialized frozen weights for the GNN encoders as
part of their training process: Huang et al. [3] explore the feasibility of identify-
ing effective untrained GNNs without parameter tuning. However, their method
still involves a training phase to optimally prune network connections. Boker
et al. [1] investigate the ability of GNN encoders to capture and compare graph
structures without training. They show that even with random initialization,
GNNs can achieve competitive results in tasks like graph classification. How-
ever, the authors focus on specific architectures that are not commonly used in
practical applications. Bui et al. [2] use random weights for the message-passing
propagation. However, the model includes a node feature extractor in the first
layer that needs to be trained with SGD. Furthermore, they use diagonal weight
matrices during message passing, ensuring no interaction between different em-
bedding dimensions. In contrast, our training procedure can be used for every
GNN architecture, requires no changes to the model’s architecture, and does not
restrict the parameter matrices or used nonlinearities in any way.

3 A Model Target Alignment Measure

Let G be a set of pairwise non-isomorphic node- and edge-attributed graphs. Let
y: G — R be a target label function. A GNN encoder is a function ¢ : G — R"
that is implemented by some GNN architecture. In this work, we consider a
fixed number of GIN [9] or GCN [4] layers followed by sum or mean pooling.
For a specific fixed GNN encoder ¢ and given supervised learning task (D C
G,y), we define an alignment score that measures how effectively the learned
representations reflect the underlying label structure. This alignment score is
based on two pseudometrics dy and dy, on the set of labeled graphs. A pseudo-
metric d on G is a symmetric function d : G x G — R that fulfills the triangle
inequality and d(G, G) = 0 for all graphs in G. The pseudometric d is based on
the embeddings produced by the GNN ¢ and is used to find similar graphs.

Definition 1. Let ¢ : G — R™ be a graph neural network and let d : R xR" — R
be the Fuclidean metric. Then we define the GNN pseudometric as

dy(G, H) = d(¢(G), (H)).

The pseudometric d,, is based on the label y and is used to determine if two
similar graphs have the same label.

Definition 2. Let y: G — R be a target label function. The functional pseudo-
metric dy : G x G — [0, 1] is defined as

1 e
WG = {o i 9(G) = y(H).

It is easy to see that both dy and d, are pseudometrics on any set of labeled
graphs. Note that dy and d, are indeed pseudometrics rather than true metrics:
Message-passing neural networks like GIN or GCN are known to map certain
non-isomorphic graphs to the same embedding (i.e., #(G) = ¢(H)) whenever
G and H are indistinguishable by the Weisfeiler-Leman graph isomorphism test
[9]. As a result, dy(G,H) = 0 does not necessarily imply that G and H are
isomorphic. Similarly dgun(G, H) = 0 for two non-isomorphic graphs G, H with
identical labels y(G) = y(H). We now propose an alignment score that quantifies
the difference between the local label distribution around a graph in embedding
space and the global label distribution beyond the immediate neighborhood.

Definition 3. Let D be a finite labeled graph dataset, ¢ an GNN encoder, and
k a positive integer. For each graph G € D, let Séﬁ(G) C D\ {G} be a set of
k-nearest neighbors with respect to dg. We define the average functional distance
between G and these k nearest neighbors
1
Ap(G;6,D) 1= > dy(G.H)
HeSk(G)
and, analogously, the average functional distance between G and its non-neighbors
1
Bi(G;¢,D) i= ———— dy, (G, H).
k(7¢a) |D|—k—1 Z y())
HeD\Sg(G)
The alignment score between d¢ and d is then given by

Z[Ai(G; 9,)+Bk(G;¢,D)]

GeD

ALIy (¢, D |D\

Observe that ALI; (4, D) is positive if the neighborhoods of graph embed-
dings contain a larger fraction of graph embeddings of the same class than the
non-neighborhoods. An alignment score close to zero indicates that the local
and global label distributions are nearly identical. We use this alignment score
as a supervised learning objective for graph neural network encoders and show
that models ¢ with high ALI;(#, D) are good feature extractors for subsequent
models.

Implementation. The computation of ALI,(¢, D) can be vectorized for ef-
ficient parallelization on CPU and GPU hardware. Efficient kernels exist in
PyTorch for the computation of Euclidean as well as Hamming distance matri-
ces. Ag and By can be computed from these distance matrices by first computing
suitable masks for the k nearest neighbors of each graph. We also experimented
with Manhattan and cosine distances in the GNN pseudometric, and observed
no notable differences in the results.

4 Sampling Algorithm

Our alignment score ALI (¢, D) allows us to quantify the performance of a GNN
encoder ¢ without requiring an MLP decoder and without SGD. For this, we
begin by fixing the architecture of the encoder: the type of message passing (GIN
or GCN), the number of layers, and the layer dimension. We randomly initialize
this GNN by sampling weight matrices for the linear layers and compute the
alignment score of this randomly sampled GNN ¢. We repeat the sampling and
evaluation process a fixed number of times and select the encoder ¢, with the
highest alignment score. To perform downstream predictions, we train an MLP
decoder ¥ on the output of ¢nax with SGD to obtain a predictor y ~ 1) 0 ¢ax.
Note that when training the MLP decoder v, we freeze the weights of the GNN
encoder ¢p,.x, meaning that the GNN encoder is trained entirely without SGD.

Implementation. In standard GNN training with SGD, weight initialization
is only used to stabilize and optimize training convergence during backpropaga-
tion. In our approach, the GNN encoder’s behavior is entirely defined by its ini-
tialization. We draw GNN parameters i.i.d. from a normal distribution A (0, 1).
We have explored different parameter initialization methods and have not found
significant differences in their performance. The sampling of parameter values,
the computation of embeddings of multiple GNN encoders, and the computation
of alignment scores can be efficiently parallelized on modern hardware.

5 Experiments

To evaluate the performance of our proposed alignment-based selection of sam-
pled GNNs, we conduct an extensive comparison to end-to-end SGD-trained
GNNs. To ensure our method is effective across a wide range of model designs,
we report results for 16 distinct architecture configurations on seven benchmark
datasets [5]. We consider two message-passing layer types (GCN and GIN),
varying network depths (2 or 3 layers), hidden widths (256 or 512 units), and
two global pooling strategies (sum and mean).

We employ a 5-fold stratified cross-validation protocol (80%/10%,/10% split).
Each hyperparameter configuration is trained 3 times, with the optimal setting
selected based on mean validation accuracy. We report the mean test accuracy
and standard deviation of the selected models. To ensure a fair comparison,
we allocated the same computational budget (wall-clock time) to both methods.
As a baseline, we train full GNN models using SGD. Each model comprises the
GNN encoder followed by a two-layer MLP classifier with a hidden dimension of
64. Weights are updated via backpropagation using the AdamW optimizer with
cross-entropy loss. For each fold, we perform a grid search over learning rates
{be-4, 1e-3, 2e-3}, training for 300 epochs using a cosine annealing scheduler with
a linear warmup for the first 10% of epochs. In our proposed approach, the GNN
weights are randomly initialized and then frozen. To select the best encoder, we
employ the following selection loop for each of the 5 cross-validation folds: We
generate a pool of 2,000 independent GNN encoders and select the encoder with

Table 1: Average test accuracy (mean pooling) of models trained end-to-end
with SGD, and with our method.

Layers 2 3
Dims 256 512 256 512

SGD Ours SGD Ours SGD Ours SGD Ours
Mutagenicity

GIN 81.3i1.97 81.2i187 81.6j:2.17 81.2j:1.50 81.1i1.75 81.0i1.29 81.8i1.53 81.7i1.78
GCN 79.T+176 79.542.40 8041223 80.2+251 80.0x193 79.9+105 80.5x133 80.3x1.50

NCI1
GIN 78.6+182 T7.6+202 784x110 T7.6x170 T784x175 T7.6x138 785138 T8.2+1.67
GCN 76.2+158 7594183 T76.5+172 76.0x221 77.94100 76.71160 7722187 T7.1s173

Enzymes
GIN 52.1+6.05 50.346.99 51.0xc.01 49.31620 50.Txes1 50.2+570 50.8+s.04 49.147.37
GCN 49.5+7.10 49.8+6.35 49.542.73 50.1+6.02 47.0+2.77 4714456 50.1+452 49.6+5.24

Proteins
GIN 70.5i4.06 72.1i4 T4 71-4i4.11 72.7i5.29 71-2:&5.03 70.6i4.79 70.0:&5.44 71-7i4.24
GCN 7094525 T1.54337 71.8:1285 Tl.4+200 70.6x250 70.6+283 T1.1xa2s T71.1x27s

DD
GIN 75.243.04 76.8+4.23 T4.1+3.50 76.6+3.44 73.6+2.85 73.5+4.35 74.9+2.36 75.1+3.32
GCN 73.6+0.52 76.2+4.58 T4.7+0.96 75.3+3.28 73.6+2.18 T4.415.08 T4.7+2.04 T4.242.37

IMDB-BINARY
GIN 7244233 7224301 T1.6+237 70.8+314 72.64205 7234241 T1.62262 71.8+3.00
GCN 71443910 T1.743.41 T71.84296 Tl.disse T2.8+37s 72311201 70.8+3.06 71.6+a.05

IMDB-MULTI
GIN 50.7+3.45 50.045.17 50.7£2.97 50.7+2.57 50.0+35.07 51.3+2.6s8 50.6£3.36 50.8+2.72
GCN 50.6+2.62 50.8+3.26 50.6+1.55 51.4+2.70 51.2+42.08 50.4+2.64 51.5+2.20 51.0+3.02

the highest ALI score on the training split. Then, we train a decoder (identical
to the baseline’s two-layer MLP) using the same optimization protocol (AdamW,
300 epochs, cosine annealing) as the baseline.

The results for the mean pooling are shown in Table 1, and the results for
sum pooling follow a similar trend. To globally compare methods, we report
a macro-averaged Vargha-Delaney Ao measure [8]: for each dataset and each
architecture, we compute Ao for that configuration by aggregating over the
folds, and then average these scores across all configurations, giving equal weight
to every dataset—architecture combination. Pooling variants (mean and sum) are
both included in this macro-average, each treated as a separate configuration.
In our comparison, this macro-averaged Ao is 0.48. Since 0.5 corresponds to
no difference and values in the range 0.44-0.56 are conventionally regarded as
negligible [8], we interpret this as no statistically significant difference between

the two methods. That is, our backpropagation-free training works as well as
SGD.

6 Conclusion

We developed a novel training method based on randomly sampling the weights
of graph neural networks and demonstrated that it achieves results that are
competitive with stochastic gradient descent-based training. To this end, we
introduced an alignment score on latent graph representations as a means of
assessing the quality of graph embeddings for classification tasks. This score
proved to be highly correlated with the model’s final performance.

In future work, we would like to improve the computational efficiency of our
alignment score which currently scales quadratically with the size of the training
set. Furthermore, extensions of the score to highly imbalanced datasets or to
regression tasks would allow to tackle a wider range of practical problems.

References

[1] Boker, J., Levie, R., Huang, N., Villar, S., Morris, C.: Fine-grained expres-
sivity of graph neural networks. In: NeurIPS (2023)

[2] Bui, T., Naman, A., Schonlieb, C.B., Ribeiro, B., Bevilacqua, B., Eliasof,
M.: Random propagations in GNNs. In: Workshop on Unifying Represen-
tations in Neural Models (UniReps) at NeurIPS (2024)

[3] Huang, T., Chen, T., Fang, M., Menkovski, V., Zhao, J., Yin, L., Pei, Y.,
Mocanu, D.C., Wang, Z., Pechenizkiy, M., Liu, S.: You can have better
graph neural networks by not training weights at all: Finding untrained
gnns tickets. In: Learning on Graphs Conference (2022)

[4] Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolu-
tional networks. In: ICLR (2017)

[5] Morris, C., Kriege, N.M., Bause, F., Kersting, K., Mutzel, P., Neumann,
M.: Tudataset: A collection of benchmark datasets for learning with graphs.
In: Graph Representation Learning and Beyond Workshop at ICML (2020)

[6] Papyan, V., Han, X.Y., Donoho, D.L.: Prevalence of neural collapse during
the terminal phase of deep learning training. Proceedings of the National
Academy of Sciences (2020)

[7] Pasa, L., Navarin, N., Erb, W., Sperduti, A.: Backpropagation-free graph
neural networks. In: ICDM (2022)

[8] Vargha, A., Delaney, H.D.: A critique and improvement of the "cl" common
language effect size statistics of mcgraw and wong. Journal of Educational
and Behavioral Statistics 25(2), 101-132 (2000)

[9] Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural
networks? In: ICLR (2019)

[10] Yaras, C., Wang, P., Zhu, Z., Balzano, L., Qu, Q.: Neural collapse with
normalized features: A geometric analysis over the riemannian manifold.
In: NeurIPS (2022)

	1 Introduction
	2 Related Work
	3 A Model Target Alignment Measure
	4 Sampling Algorithm
	5 Experiments
	6 Conclusion

