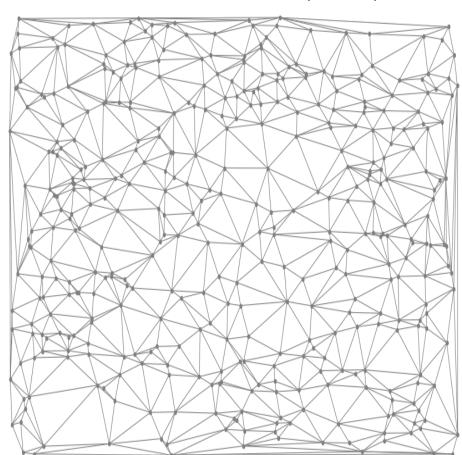
HOPS: Probabilistic Subtree Mining for Small and Large Graphs

Pascal Welke, Florian Seiffarth, Michael Kamp, Stefan Wrobel

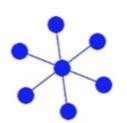
Counting patterns in Large Graphs

pattern H

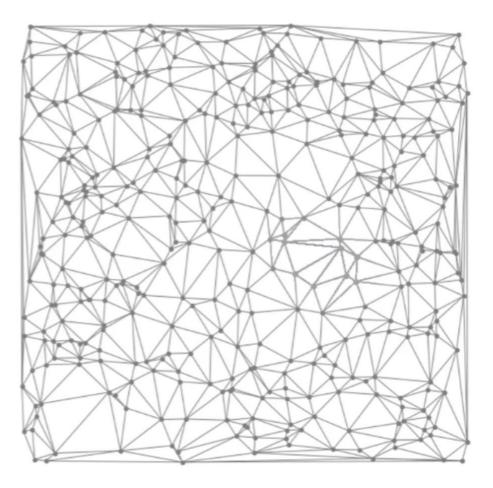


graph G = (V, E)

Counting patterns in Large Graphs



Pattern Count: ?



Importance Sampling

Problem:

- Exact counting is slow
- Only algorithms with exponential runtime known, (e.g. Ullmann, 1976)

Need estimation algorithms!

Idea:

Importance Sampling to Estimate Pattern Count

• Find embedding and estimate number of possible inclusions

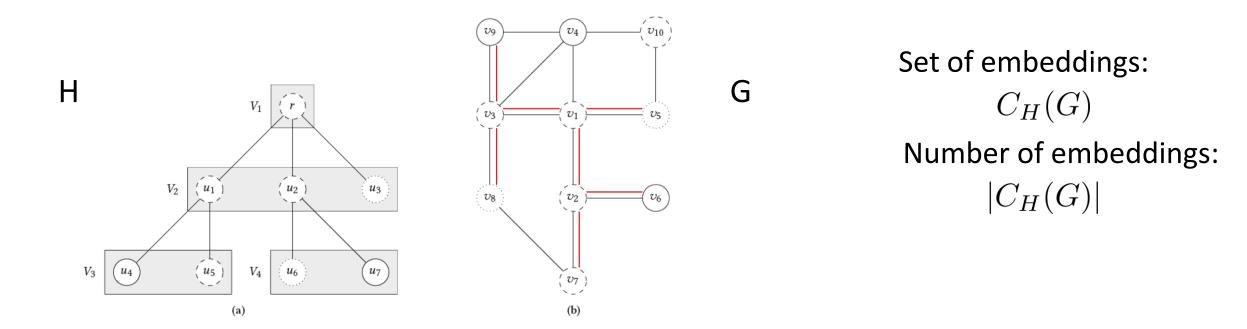
$$\mathbb{E}[Z] = \sum_{i \in C_H(G)} p_i \frac{1}{p_i} = |C_H(G)| \qquad Z = \frac{1}{p_i}$$

- Requires to know probability of having found a certain embedding $\ p_i$

Theoretical problem setting

- Labeled (large) graph: G = (V(G), E(G), l(G))
- Labeled pattern graph: H = (V(H), E(H), l(H))

Estimate the number of subgraph isomorphisms from H to G!



Estimate Pattern Count

- Simple idea: Importance Sampling
 - Find (partial) embeddings and estimate the number of possible inclusions

$$Z = \frac{1}{p_i} \qquad \mathbb{E}[Z] = \sum_{i \in C_H(G)} p_i \frac{1}{p_i} = |C_H(G)|$$

- Iterate k times and take averaged estimation p_i
- Requires to know probability of having found a certain embedding

For arbitrary graphs this is still expensive!

Importance Sampling in arbitrary graphs

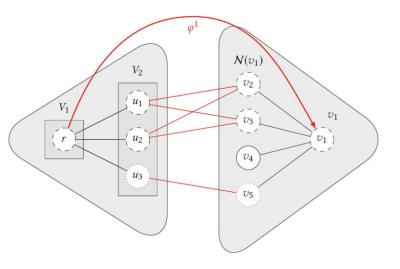
- Pattern graph needs an ordered bipartite decomposition (OBD) for efficient approximation (Fürer, 2014)
- Need to sample maximum matchings almost uniformly at random which is expensive
- Requires to compute ordered bipartite decomposition of pattern (OBD), Runtime for k iterations

$$\mathcal{O}\left(k\frac{s(D(H))\Delta(G)!}{(\Delta(G) - w(D(H)))!} \cdot (w(D(H)) + \Delta(G))\right)$$

- factorial in the degree of G
- depending on the size of OBD of H

Our solution: Restrict pattern graphs H to trees, often patterns are already trees

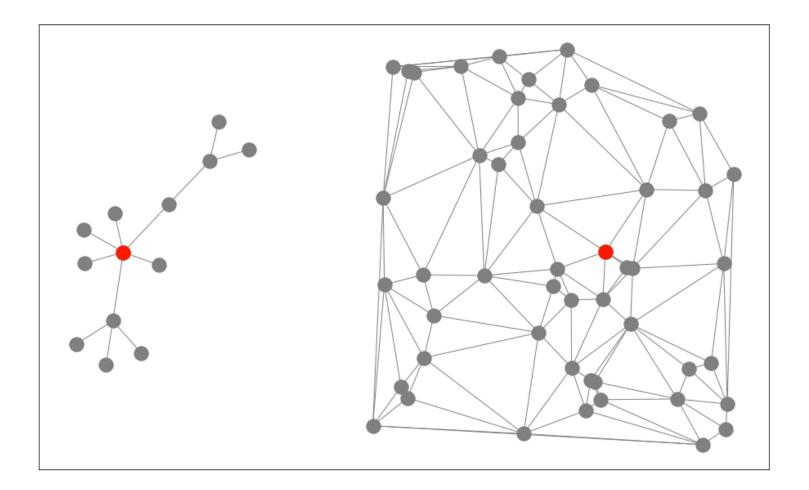
OBD D(H)



Restricting to tree patterns

• Select tree root uniformly at random

The HOPS algorithm



Restricting Patterns to Trees

- Advantages:
 - Easy implementation and fast
 - No computation of OBD
 - No explicit matching algorithm necessary
 - Depends **linearly** on pattern size and large graph degree (large graph size does not matter!)
- Disadvantages:
 - Only trees as patterns, often patterns are actually trees

Estimating Embeddings for Tree Patterns is Accurate and FAST!

- same guarantees hold as for general patterns (FPRAS)
- runtime $\mathcal{O}\left(k\left|V(H)\right|\Delta(G)\right)$
 - depends only linearly on degree of G
 - depends only linearly on number of vertices in pattern

HOPS Estimation Experiments

Graph Data:

Graph	V	E	$\varnothing \delta(G)$	$\Delta(G)$	density
YEAST	16233	18355	2.26	124	$1.4 \cdot 10^{-4}$
DBLP	393230	447650	2.28	1036	$5.7\cdot 10^{-6}$
WEBKB	5732	6750	2.36	133	$2.0\cdot 10^{-4}$
FB	28057	112252	8.00	1051	$3.0\cdot 10^{-4}$
AMAZON	334863	925872	5.53	549	$8.3\cdot 10^{-6}$
ORKUT	3072441	117185083	76.28	33313	$1.2 \cdot 10^{-5}$
LIVEJOURNAL	3997962	34681189	17.35	14815	$2.2\cdot 10^{-6}$

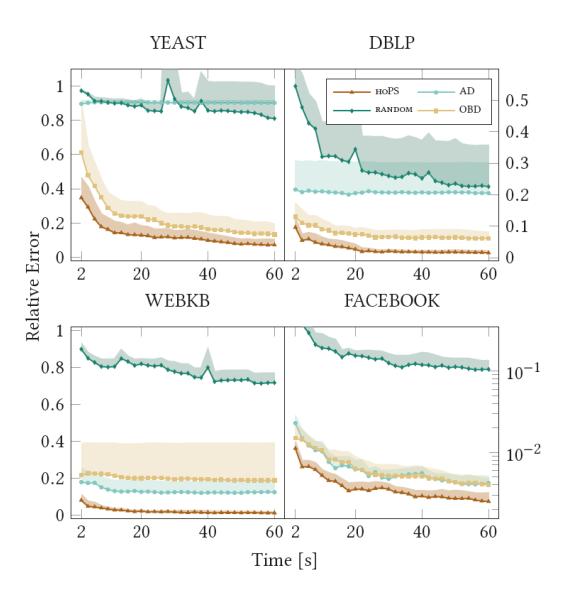
 Table 1: Graph datasets

Baselines:

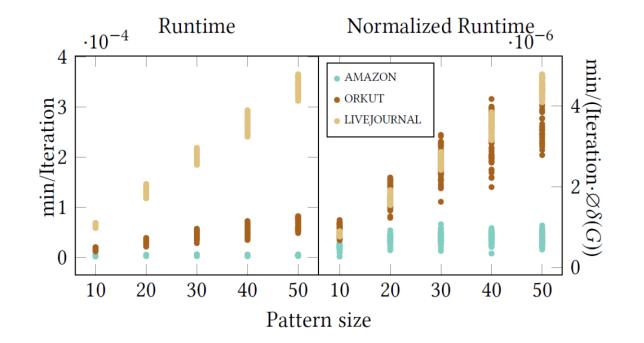
- Exact algorithm (Ullmann, 1976)
- OBD/AD algorithms (Ravkic, 2018)

Estimation Results

- HOPS outperforms baselines
- Lower relative error
- Lower deviation
- Very Fast compared to exact algorithm



How fast is HOPS in Practice?



- At least linear in the pattern size (faster for bigger patterns because no embedding found)
- Does not depend on large graph sizes

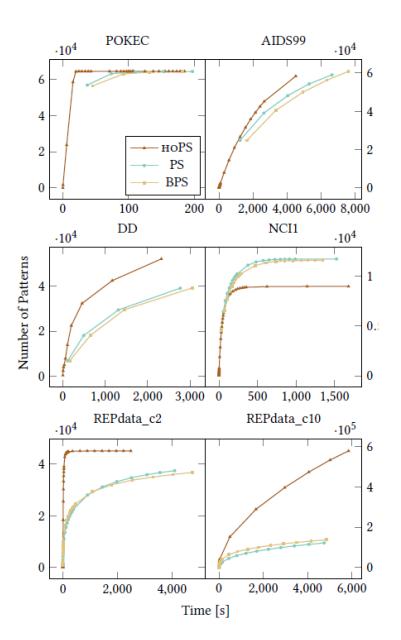
Note: Usually no chance of exact embedding number for patterns bigger than 20 in acceptable time

HOPS Frequent Subtree Mining Experiment

Use HOPS to decide whether candidate pattern

is frequently present in graph database

- Finds substantially more patterns in the same time than state-of-the-art
- In some cases faster by orders of magnitude



Conclusion

- Very fast, independent of target graph size!
- Accurate, outperforms state of the art estimation algorithms
- easy to implement
- allows to estimate number of trees in graphs too large and patterns too large for state-of-the-art
- Finds frequent subtrees orders of magnitudes faster than state-of-the-art