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MPNN Embedding Distance Aligns With Target Label Distance Weisfeiler Leman Labeling Tree (WILT) Distance Between WL
o o Color Multisets Is Interpretable and Efficiently Computable
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The MPNN embedding distance (4,;pny) aligns with the distance between

target labels (¢, ) after training with CE or RMSE loss dwir €Can approximate 4,;pny by adjusting edge weights w (distillation).

WL colors ¢ with large weights mostly determine dy; 7, thus dypay.

The stronger the alignment, the higher the performance. Graph space

dwi (G, H; w) can be computed in o(|Vg| + V).

/Q: How do MPNNs embed graphs in a way that |
respects the distance between target labels?

The WILT distance generalizes the distances corresponding to well-

. known graph kernels. [KGW16; Tog+19]
MPNN Embedding Distance Is a Distance Between Weisfeiler MPNN Embedding Distance Is Determined By Only Small
Leman (WL) Color Multisets Number Of WL Colors
Weisfeiler Leman algorithm: Weight distribution (1) epoxide (2)

10% 4

G 60 .@Q H QOO .@o ﬂ @\

[
-
w

2

O O O O OO0 =
¢ ¢ ¢ ¢ ¢ = (3) (4) alphatic halide
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The expressive power of the WL algorithm bounds that of MPNNs. //O A
Thus, there exists a function 7 s.t. "3 H,
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dyipnn (G, H) == |[MPNN(G) — MPNN(H)| 5 Weight value Hs
_ (L) _ (L)
- Hf({{qém vevel) {é;{{% v e Vbl GCN trained on the Mutagenicity dataset, which contains 2401 muta-
= df{er” [veVak fev™ |veVhh). gens and 1936 non-mutagens.

i i i Identify | ith chemical studies. [KMBO5
Approximate d, - With a more interpretable dentified colors agree with chemical studies. | ]

distance between WL color multisets!
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