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Message passing graph neural networks (MPNNs) have been reported to achieve high predictive performance in various
domains [1]. To understand these performance gains, many studies have focused on the expressive power of MPNNs
[2]. However, the binary nature of expressive power excludes any analysis of the distance between graph embeddings,
which is considered to be a key to the predictive power of MPNNs [3]. Recently, there has been growing interest in the
analysis of MPNN performance using structural distances between graphs that consider graph topology but ignore the
target function to be learned. In contrast, we investigate the distance dMPNN implicitly obtained from an MPNN and its
relation to a functional distance dfunc defined on the target values of the learning task.

We find that even if an MPNN was trained with classical cross-entropy loss, dMPNN respects the task-relevant
functional distance dfunc and the alignment between both is highly correlated with the predictive performance of MPNNs.
Since MPNNs consider graphs as multisets of Weisfeiler Leman (WL) subgraphs, we propose a method to identify WL
subgraphs whose presence in a graph significantly affects its relative position to other graphs in the MPNN embedding
space. Specifically, we distill MPNNs into a weighted Weisfeiler Leman Labeling Tree (WILT) while preserving dMPNN.
The WILT yields an optimal transport distance on a tree ground metric, which we prove to be a trainable generalization
of the graph distances of existing high-performance graph kernels [4,5]. Figure 1 gives a brief overview of the involved
concepts. We show experimentally that the WILTing tree distance fits MPNN distances well and that only a small number
of WL subgraphs determine dMPNN. In a qualitative experiment, the subgraphs that strongly influence dMPNN are those
that are known to be functionally important by domain knowledge. In short, our contributions are:

! We show that MPNN distances after training are aligned with the task-relevant functional distance of the graphs and
that this is key to the high predictive performance of MPNNs.

! We propose a trainable graph distance on a weighted Weisfeiler-Lehman Labeling Tree (WILT) that generalizes Weis-
feiler Leman-based distances and is efficiently computable.

! WILTs allow a straightforward definition of relevant subgraphs. Thus, distilling an MPNN into a WILT enables us to
identify subgraphs that strongly influence the distance between MPNN embeddings, allowing an interpretation of
the MPNN embedding space.
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Figure 1: (left) Example of how the Weisfeiler Leman (WL) algorithm works on graphs G and H. and are colors
corresponding to initial node labels. Node colors in WL-iterations one and two are shown in the small circles next to the
nodes. (center): The Weisfeiler Leman Labelling Tree (WILT) built from D = {G, H}, it encodes the hierarchy of WL
labels and allows edge weights. (right): The WILT embeddings ν contain normalized counts of all WL colors for G and
H. The optimal transport distance dWILT(G, H) can be computed as weighted Manhattan distance of ν(G) and ν(H).
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