

Weisfeiler and Leman Go Loopy

Raffaele Paolino*, Sohir Maskey*, Pascal Welke, Gitta Kutyniok

1. Motivation

- \hookrightarrow Need for more expressive and scalable neural architectures:
 - ▲ Message Passing Neural Networks expressive power bounded by Weisfeiler-Leman test.
 - ▲ Neural Networks based on higher-order Weisfeiler-Leman test present scalability issues.
- → Ability to count important substructures:
 - ▲ Other methods have limited cycle-counting powers.
 - ▲ Inputting substructures counting is not flexible as substructures need to be defined by the user.

2. Proposed Solution

- → We increase neighborhood of nodes by considering "nearby" paths:
 - ▲ Provably more expressive than other methods.
 - ▲ Scalable as it retains the initial sparsity of the graph.

3. Preliminaries

Definition. Given a graph G, a simple path of length r is a collection $\mathbf{p} = \{p_i\}_{i=1}^{r+1}$ of r+1 nodes such that consecutive nodes are adjacent, i.e.,

$$p_i, p_{i+1} \in E(G), \ \forall i \in \{1, \dots, r\},\$$

and there are no repeated nodes, i.e., $i \neq j \implies p_i \neq p_j$.

Definition. Given a graph G and an integer $r \geq 1$, we define the r-neighborhood $\mathcal{N}_r(v)$ of $v \in V(G)$ as the set of all simple paths of length r between distinct direct neighbors of v which do not contain v, i.e.,

$$\mathcal{N}_r(v) := \{ \mathbf{p} \mid \mathbf{p} \text{ r-path}, p_1, p_{r+1} \in \mathcal{N}(v), v \notin \mathbf{p} \}.$$

4. Loopy Weisfeiler Leman

Path-wise

GNN

Raw graph Preprocessing: extracting $\mathcal{N}_r(v)$

Training: paths-to-graph embedding

Pooling path

embeddings

Graph Graph Embedding Pooling

Theorem 1. Let $r \geq 1$, r- ℓ WL can subgraph-count all cycles with at most r + 2 nodes.

> Intuitive idea of counting how many times a motif appears in the graph.

Theorem 2. Let $r \geq 1$. Then, $r\text{-}\ell WL$ can homomorphism-count any graph in which every edge lies on at most one simple cycle of length at most r.

> It is a complete measure: knowing the homomorphism count of each possible motif in a graph means knowing the graph itself

5. Experiments							
	Model	ZINC12K		Model	ZINC250K		
$egin{array}{c} 1 \ 2 \ 3 \end{array}$	5-\ellGIN DRFWL CIN	0.072 ± 0.002 0.077 ± 0.002 0.079 ± 0.006	1 2 3	5- ℓ GIN CIN I2-GNN	0.022 ± 0.001 0.022 ± 0.002 0.023 ± 0.001		
Model $hom(C_4, G)$ $hom(C_4-C_4, G)$							

3 CIN	0.079 ± 0.006	3 12-GNN 0.0	023 ± 0.00
			_
Model	$hom(C_4,G)$	$\hom(C_4 - C_4, G)$	
0-ℓGIN	$(2.48 \pm 0.01) 10^{-1}$	$(1.14 \pm 0.01) 10^{-1}$	
1-ℓGIN	$(1.91 \pm 0.03) 10^{-1}$	$(7.9 \pm 0.1) 10^{-2}$	$\bigcirc C_4 \bigcirc$
2-ℓGIN	$(2.56 \pm 0.49) 10^{-4}$	$(1.8 \pm 0.6) 10^{-2}$	_
			\sim

6. Conclusions

- \hookrightarrow Expressive:
 - ▲ strictly more powerful than 1-WL;
 - ▲ incomparable to k-WL and subgraph GNNs;
 - ▲ more powerful than injecting subgraph-counts and homomorphism-counts as features;
- \hookrightarrow Scalable:
 - \blacktriangle preprocessing complexity $\mathcal{O}(N\,d^{r+2})$;
 - ▲ linear complexity in the forward pass w.r.t. number of edges and the number of paths in the rneighborhoods;