

Motivation

- \hookrightarrow The most common paradigm of GNNs is **message passing**.
 - ► Messages are collected from neighboring nodes.
 - ► Messages are used to update the node features'.
- \hookrightarrow 1-WL bounds expressive power of message passing GNNs.
 - ► Scalable but not powerful enough.

- \hookrightarrow 3-WL applies message passing to an auxiliary graph.
 - ► Powerful but not scalable.

 \hookrightarrow Easily distinguished by the counts of cycles.

	Pattern F				
	0	0	2		900
Decalyn	10	22	0	78	0
Bycyclopentyl	10	22	0	78	20

- → Need for more expressive and scalable neural architectures:
 - ► Message Passing Neural Networks expressive power bounded by Weisfeiler-Leman test.
 - ▶ Neural Networks based on higher-order Weisfeiler-Leman test present scalability issues.
- → Ability to count important substructures:
 - ▶ Other methods have limited cycle-counting powers.
 - ► Explicit substructure counting is expensive and not flexible.

Weisfeiler and Leman Go Loopy

Raffaele Paolino*, Sohir Maskey*, Pascal Welke, Gitta Kutyniok

2. Loopy Weisfeiler Leman

Definition. Given a graph G, a simple path of length r is a collection $\mathbf{p} = \{p_i\}_{i=1}^{r+1}$ of r+1 distinct nodes such that consecutive nodes are adjacent.

Definition. Given a graph G and an integer $r \geq 1$, we define the r-neighborhood $\mathcal{N}_r(v)$ of $v \in V(G)$ as the set of all simple paths of length r between distinct direct neighbors of v which do not contain v, i.e.,

$$\mathcal{N}_r(v) \coloneqq \{\mathbf{p} \mid \mathbf{p} \text{ r-path}, p_1, p_{r+1} \in \mathcal{N}(v), v \notin \mathbf{p}\}.$$

Definition. We define the r-loopy Weisfeiler-Leman $(r-\ell WL)$ test by the following color update:

$$c_r^{(t+1)}(v) \leftarrow \text{HASH}_r\left(c_r^{(t)}(v), \left\{\left\{c_r^{(t)}(\mathbf{p}) \mid \mathbf{p} \in \mathcal{N}_0(v)\right\}\right\},\right.$$

$$\vdots$$

$$\left\{\left\{c_r^{(t)}(\mathbf{p}) \mid \mathbf{p} \in \mathcal{N}_r(v)\right\}\right\}\right)$$

where $c_r^{(t)}(\mathbf{p}) := \left(c_r^{(t)}(p_1), c_r^{(t)}(p_2), \dots, c_r^{(t)}(p_{r+1})\right)$ is the sequence of colors of nodes in the path.

5. Summary

- \hookrightarrow Expressive:
 - ► strictly more powerful than 1-WL;
 - ▶ incomparable to k-WL and subgraph GNNs;
 - ▶ more powerful than injecting subgraph-counts and homomorphism-counts as features;
- Scalable:
 - \triangleright preprocessing complexity $\mathcal{O}(Nd^{r+2})$;
 - ▶ linear complexity in the forward pass w.r.t. the number of edges and the number of paths in the r-neighborhoods;

Expressivity

Definition. Let F and G be two graphs. A homomorphism from F to G is a map $h:V(F)\to V(G)$ such that $\{u,v\}\in E(F)$ implies $\{h(u),h(v)\}\in E(G)$. The set of homomorphisms from F to G is denoted by Hom(F,G), and its cardinality by hom(F,G) := |Hom(F,G)|.

> Counting homomorphisms is a complete isomorphic measure: $G \cong H$ if and only if $hom(F, G) = hom(F, H) \ \forall F$.

- ▶ 1-WL can homomorphism-count trees and forests.
- ▶ 3-WL can homomorphism-count graphs with tree width less than 3.

Theorem. Let $r \geq 1$. Then, $r\text{-}\ell WL$ can homomorphism-count any graph in which every edge lies on at most one simple cycle of length at most r+2.

- $ightharpoonup r-\ell WL$ is more powerful than \mathcal{F} -Hom-GNNs, where $\mathcal{F} = \{C_3, \ldots, C_{r+2}\}$.
- ▶ For any k > 0, 1- ℓ WL is not less powerful than Subgraph k-GNN.

Definition. A subgraph isomorphism is an injective homomorphism.

Counting subgraph isomorphisms is the intuitive idea of counting how many times a motif appears in the graph.

- ► MPNN can subgraph-count paths of length up to 2.
- ▶ 3-WL can subgraph-count cycles of length up to 7.

Theorem. Let $r \geq 1$, $r\text{-}\ell WL$ can subgraph-count all cycles with at most r+2 nodes. Moreover, $\forall k \in \mathbb{N} \ \exists r \in \mathbb{N} \ \text{such that} \ r\text{-}\ell \text{WL is not less powerful than} \ k\text{-WL}.$

ZINC ZINC12K Model Model Model Model 0.072 ± 0.002 0.00205 0.077 ± 0.002 0.00226 0.079 ± 0.006 Model ZINC250KModel Model Model $\epsilon_{ m lumo}$ 0.022 ± 0.001 5- ℓGIN 5-ℓGIN 5- ℓGIN 0.002160.042 0.022 ± 0.002 0.00225 0.023 ± 0.001 17.0 0.00267I2-GNN

Num. of distinguished pairs.

100

60

4- $\ell \mathrm{GIN}$

Test MAE for homomorphism- and subgraph-counts. hom(F,G)(100) (100)

$\mathrm{sub}(F,G)$				
0.208				
0.020 0.024 0.046 0.007 0.027				
0.011 0.017 0.034 0.007 0.016				
0.004 0.010 0.020 0.003 0.010				
0.0005 0.0003 0.0003 0.001 0.0004				

