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3. Expressivity

2. Loopy Weisteiler Leman

1. Motivation
Definition. Definition. Let F' and G be two graphs.

Given a graph G, a simple path of length r is a collec- A homomorphlsm from F to G is a map

tion p = {p; :;1 of r+1 distinct nodes such that consecutive nodes BN hoo V(F) — V(.G) such that {u,v} € E(F) implies {h(u),h(v)}. < E(G) . The

are adjacent. ” set of homomorphisms from F' to G is denoted by Hom(F,G), and its cardinality by
hom(F,G) = |Hom(F, G)|.

Counting homomorphisms is a complete isomorphic measure: G = H if and only

if hom(F,G) = hom(F,H) VF.

» 1-WL can homomorphism-count trees and forests.
» 3-WL can homomorphism-count graphs with tree width less than 3.

— The most common paradigm of GNNs is message passing.

» Messages are collected from neighboring nodes.

» Messages are used to update the node features’.

— 1-WL bounds expressive power of message passing GNNs.

» Scalable but not powerful enough. D

Definition. Given a graph G and an integer r» > 1, we define the
r-neighborhood N, (v) of v € V(@) as the set of all simple paths of
length r between distinct direct neighbors of v which do not contain
v, 1.€e.,

Theorem. Let » > 1. Then, m-/WL can homomorphism-count any graph in which every
edge lies on at most one simple cycle of length at most r + 2.

» r-{WL is more powerful than F-Hom-GNNs, where F = {C3,...,C, 2}
» For any k£ > 0, 1-/WL is not less powerful than Subgraph k-GNN.

Nr(v) = {p ‘ p T_patha D1, Pr+1 € N(U),’U §é p} y

Definition. A subgraph isomorphism is an injective homomorphism.

Counting subgraph isomorphisms is the intuitive idea of counting how many times
a motif appears in the graph.
» MPNN can subgraph-count paths of length up to 2.

» 3-WL can subgraph-count cycles of length up to 7.

{.7 .} —> o, {., .} — o, {.7 o, .} — o,
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— 3-WL applies message passing to an auxiliary graph.

Theorem. Let r > 1, r-/WL can subgraph-count all cycles with at most r + 2 nodes.

Definition. We define the r-loopy Weisfeiler-Leman (r-fWL) test Moreover, Vk € N dr € N such that »-¢WL is not less powerful than k-WL.

by the following color update:
4. Experiments

Preprocessing: extracting N,.(v) Training: paths-to-graph embedding

{1 (v) < HASH, (cff> (), {{c2(p) | P € No(v) } | Input graph

----------------------------------------------------------------------------------------------------------------

» Powerful but not scalable.
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He(p) | p eM(v)}}),

where ¢ (p) = (cv(f) (p1), e (p2), - .-
colors of nodes in the path.

Path-wise Pooling path :>
GNN i embeddings : '

e\ (pr+1)) is the sequence of
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5 :j> Graph
: Pooling : Embedding

Path-wise Pooling path
GNN  i: embeddings :V,\ '

— Easily distinguished by the counts of cycles.

Patterﬂ F oo o, {0 00 o, {0 0 {oo0e o {0 0 0 {eo0e o D 2 Ty
{o,0} =, frr e, {o,0 {e0ee}} -0 { {ooee}} — 7INC QM9
O i C&? @D Cgi%) Model ZINC12K Model 1L Model o Model €homo
Decalyn S-B%VL 1 5-¢GIN  0.072 £ 0.002 1 DINN 0244 1 B54GIN 0217 1 54GIN  0.00205
m 10 22 0 78 0 2 DRFWL 0.077 £ 0.002 2 DRFWL 0346 2 DRFWL 0.222 2 DRFWL 0.00226
3 CIN 0.079 &= 0.006 3  5-/GIN  0.350 3 I2-GNN  0.230 3 DeepLRP 0.00254
Bycyclopentyl >
m 10 929 0 78 20) 5. Summary Model ZINC250K Model Ug Model R Model €lumo
- 1 5-¢GIN  0.022 £+ 0.001 1 5-/GIN  0.042 1 5-/GIN 13.21 1 5-/GIN 0.00216
— Expressive: 2 CIN 0.022 4 0.002 2 DRFWL 0.156 2 DRFWL 15.04 2 DRFWL 0.00225
— Need for more expressive and scalable neural architectures: » strictly more powerful than 1-WL: 3 I2-GNN  0.023 +0.001 3 I2-GNN 0.211 3 DTNN 170 3 DTNN  0.00267
» Message Passing Neural Networks expressive power » incomparable to k-WL and subgraph GNNs: Num. of distinguished pairs. Test MAE for homomorphism- and subgraph-counts.
bounded by Weisteiler-Leman test. » more powerful than injecting subgraph-counts and Model B R E C hom(F,G) sub(F, G)
» Neural Networks based on higher-order Weisfeiler- homomorphism-counts as features; (60) (140) (100) (100)
Leman test present scalability issues. 3-WL 60 50 100 60 Model O®D @ @ C&) C@ %ip 828 C@ C&)
— Scalable: PPGN 60 50 100 23
A O o NONN ro g - ; MPNN 0.300 0.233 0.254 0.358 0.208 0.188  0.146 0.261  0.205
11ty to count 1mportant substructures: : : TN Subgraph GNN  0.011 0.015 0.012 0.010 0.020 0.024 0.046 0.007 0.027
. | > preprocessing complexity O(N d"™); SN R o Local 22GNN  0.008 0.008 0.010 0.008 0011 0017 0.034 0007 0.016
» Other methods have limited cycle-counting powers. » linear complexity in the forward pass w.r.t. the number of 02 ! 82 2 Local 2-FGNN  0.003 0.005 0.004 0.003 0.004 0.010 0.020 0.003 0.010
» Explicit substructure counting is expensive and not edges and the number of paths in the r-neighborhoods; A-LGIN 60 100 9 2 r-0GIN 0.001 0.006 0.009 0.0005 0.0005 0.0003 0.0003 0.001 0.0004

flexible.
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