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implicitly encode rich contextual word semantics and sentence-level grammar
Large Language Models  infer representations that
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Abstract

Recent work has improved our ability to
detect linguistic knowledge in word repre-
sentations. However, current methods for
detecting syntactic knowledge do not test
whether syntax trees are represented in their
entirety. In this work, we propose a structural

probe, which evaluates whether syntax trees
are embedded in a linear transformation of a
neural network’s word representation space.
The probe identifies a linear transformation
under which squared L2 distance encodes the
distance between words in the parse tree, and
one in which squared L2 norm encodes depth
in the parse tree. Using our probe, we show
that such transformations exist for both ELMo
and BERT but not in baselines, providing
evidence that entire syntax trees are embedded
implicitly in deep models’ vector geometry.

1 Introduction

As pretrained deep models that build contextual-
ized representations of language continue to pro-
vide gains on NLP benchmarks, understanding
what they learn is increasingly important. To this
end, probing methods are designed to evaluate the
extent to which representations of language en-
code particular knowledge of interest, like part-of-
speech (Belinkov et al., 2017), morphology (Peters
et al., 2018a), or sentence length (Adi et al., 2017).
Such methods work by specifying a probe (Con-
neau et al., 2018; Hupkes et al., 2018), a supervised
model for finding information in a representation.

Of particular interest, both for linguistics
and for building better models, is whether deep
models’ representations encode syntax (Linzen,
2018). Despite recent work (Kuncoro et al., 2018;
Peters et al., 2018b; Tenney et al., 2019), open
questions remain as to whether deep contextual
models encode entire parse trees in their word
representations.

In this work, we propose a structural probe, a
simple model which tests whether syntax trees are
consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
approximated for each model. If such transfor-
mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees – even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
property of the word representation space, akin to
vector offsets encoding word analogies (Mikolov
et al., 2013). Using our probe, we conduct a tar-
geted case study, showing that ELMo (Peters et al.,
2018a) and BERT (Devlin et al., 2019) representa-
tions embed parse trees with high consistency in
contrast to baselines, and in a low-rank space.1

In summary, we contribute a simple structural
probe for finding syntax in word representations
(§2), and experiments providing insights into
and examples of how a low-rank transformation
recovers parse trees from ELMo and BERT rep-
resentations (§3,4). Finally, we discuss our probe
and limitations in the context of recent work (§5).

2 Methods

Our goal is to design a simple method for testing
whether a neural network embeds each sentence’s

1We release our code at https://github.com/
john-hewitt/structural-probes.
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

⇤Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can
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implicitly encode rich contextual word semantics and sentence-level grammar
Large Language Models  infer representations that
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in the parse tree. Using our probe, we show
that such transformations exist for both ELMo
and BERT but not in baselines, providing
evidence that entire syntax trees are embedded
implicitly in deep models’ vector geometry.

1 Introduction

As pretrained deep models that build contextual-
ized representations of language continue to pro-
vide gains on NLP benchmarks, understanding
what they learn is increasingly important. To this
end, probing methods are designed to evaluate the
extent to which representations of language en-
code particular knowledge of interest, like part-of-
speech (Belinkov et al., 2017), morphology (Peters
et al., 2018a), or sentence length (Adi et al., 2017).
Such methods work by specifying a probe (Con-
neau et al., 2018; Hupkes et al., 2018), a supervised
model for finding information in a representation.

Of particular interest, both for linguistics
and for building better models, is whether deep
models’ representations encode syntax (Linzen,
2018). Despite recent work (Kuncoro et al., 2018;
Peters et al., 2018b; Tenney et al., 2019), open
questions remain as to whether deep contextual
models encode entire parse trees in their word
representations.

In this work, we propose a structural probe, a
simple model which tests whether syntax trees are
consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
approximated for each model. If such transfor-
mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees – even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
property of the word representation space, akin to
vector offsets encoding word analogies (Mikolov
et al., 2013). Using our probe, we conduct a tar-
geted case study, showing that ELMo (Peters et al.,
2018a) and BERT (Devlin et al., 2019) representa-
tions embed parse trees with high consistency in
contrast to baselines, and in a low-rank space.1

In summary, we contribute a simple structural
probe for finding syntax in word representations
(§2), and experiments providing insights into
and examples of how a low-rank transformation
recovers parse trees from ELMo and BERT rep-
resentations (§3,4). Finally, we discuss our probe
and limitations in the context of recent work (§5).

2 Methods

Our goal is to design a simple method for testing
whether a neural network embeds each sentence’s

1We release our code at https://github.com/
john-hewitt/structural-probes.
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

⇤Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can
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ABSTRACT

Contextualized representation models such as ELMo (Peters et al., 2018a) and
BERT (Devlin et al., 2018) have recently achieved state-of-the-art results on a
diverse array of downstream NLP tasks. Building on recent token-level probing
work, we introduce a novel edge probing task design and construct a broad suite
of sub-sentence tasks derived from the traditional structured NLP pipeline. We
probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena. We find that existing models trained on lan-
guage modeling and translation produce strong representations for syntactic phe-
nomena, but only offer comparably small improvements on semantic tasks over a
non-contextual baseline.

1 INTRODUCTION1

Pretrained word embeddings (Mikolov et al., 2013; Pennington et al., 2014) are a staple tool for
NLP. These models provide continuous representations for word types, typically learned from co-
occurrence statistics on unlabeled data, and improve generalization of downstream models across
many domains. Recently, a number of models have been proposed for contextualized word embed-
dings. Instead of using a single, fixed vector per word type, these models run a pretrained encoder
network over the sentence to produce contextual embeddings of each token. The encoder, usually an
LSTM (Hochreiter & Schmidhuber, 1997) or a Transformer (Vaswani et al., 2017), can be trained
on objectives like machine translation (McCann et al., 2017) or language modeling (Peters et al.,
2018a; Radford et al., 2018; Howard & Ruder, 2018; Devlin et al., 2018), for which large amounts
of data are available. The activations of this network–a collection of one vector per token–fit the
same interface as conventional word embeddings, and can be used as a drop-in replacement input to
any model. Applied to popular models, this technique has yielded significant improvements to the
state-of-the-art on several tasks, including constituency parsing (Kitaev & Klein, 2018), semantic
role labeling (He et al., 2018; Strubell et al., 2018), and coreference (Lee et al., 2018), and has out-
performed competing techniques (Kiros et al., 2015; Conneau et al., 2017) that produce fixed-length
representations for entire sentences.

Our goal in this work is to understand where these contextual representations improve over conven-
tional word embeddings. Recent work has explored many token-level properties of these representa-
tions, such as their ability to capture part-of-speech tags (Blevins et al., 2018; Belinkov et al., 2017b;
Shi et al., 2016), morphology (Belinkov et al., 2017a;b), or word-sense disambiguation (Peters et al.,
2018a). Peters et al. (2018b) extends this to constituent phrases, and present a heuristic for unsuper-

⇤Correspondence: iftenney@google.com. This work was partly conducted at the 2018 JSALT work-
shop at Johns Hopkins University.

1This paper has been updated from the original version, primarily to include results on BERT (Devlin et al.,
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whether syntax trees are represented in their
entirety. In this work, we propose a structural
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The probe identifies a linear transformation
under which squared L2 distance encodes the
distance between words in the parse tree, and
one in which squared L2 norm encodes depth
in the parse tree. Using our probe, we show
that such transformations exist for both ELMo
and BERT but not in baselines, providing
evidence that entire syntax trees are embedded
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and for building better models, is whether deep
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2018). Despite recent work (Kuncoro et al., 2018;
Peters et al., 2018b; Tenney et al., 2019), open
questions remain as to whether deep contextual
models encode entire parse trees in their word
representations.

In this work, we propose a structural probe, a
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consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
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mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees – even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
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probe for finding syntax in word representations
(§2), and experiments providing insights into
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recovers parse trees from ELMo and BERT rep-
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neau et al., 2018; Hupkes et al., 2018), a supervised
model for finding information in a representation.

Of particular interest, both for linguistics
and for building better models, is whether deep
models’ representations encode syntax (Linzen,
2018). Despite recent work (Kuncoro et al., 2018;
Peters et al., 2018b; Tenney et al., 2019), open
questions remain as to whether deep contextual
models encode entire parse trees in their word
representations.

In this work, we propose a structural probe, a
simple model which tests whether syntax trees are
consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
approximated for each model. If such transfor-
mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees – even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
property of the word representation space, akin to
vector offsets encoding word analogies (Mikolov
et al., 2013). Using our probe, we conduct a tar-
geted case study, showing that ELMo (Peters et al.,
2018a) and BERT (Devlin et al., 2019) representa-
tions embed parse trees with high consistency in
contrast to baselines, and in a low-rank space.1

In summary, we contribute a simple structural
probe for finding syntax in word representations
(§2), and experiments providing insights into
and examples of how a low-rank transformation
recovers parse trees from ELMo and BERT rep-
resentations (§3,4). Finally, we discuss our probe
and limitations in the context of recent work (§5).

2 Methods

Our goal is to design a simple method for testing
whether a neural network embeds each sentence’s

1We release our code at https://github.com/
john-hewitt/structural-probes.
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

⇤Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can

Proceedings of the Second BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP, pages 241–253
Florence, Italy, August 1, 2019. c�2019 Association for Computational Linguistics

241

Open Sesame: Getting Inside BERT’s Linguistic Knowledge

Yongjie Lin
a,⇤ and Yi Chern Tan

a,⇤ and Robert Frank
b

aDepartment of Computer Science, Yale University
bDepartment of Linguistics, Yale University

{yongjie.lin, yichern.tan, robert.frank}@yale.edu

Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

⇤Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can

(2019)

Published as a conference paper at ICLR 2019

WHAT DO YOU LEARN FROM CONTEXT? PROBING FOR
SENTENCE STRUCTURE IN CONTEXTUALIZED WORD
REPRESENTATIONS

Ian Tenney,
⇤1

Patrick Xia,
2

Berlin Chen,
3

Alex Wang,
4

Adam Poliak,
2

R. Thomas McCoy,
2

Najoung Kim,
2

Benjamin Van Durme,
2

Samuel R. Bowman,
4

Dipanjan Das,
1

and Ellie Pavlick
1,5

1Google AI Language, 2Johns Hopkins University, 3Swarthmore College,
4New York University, 5Brown University

ABSTRACT

Contextualized representation models such as ELMo (Peters et al., 2018a) and
BERT (Devlin et al., 2018) have recently achieved state-of-the-art results on a
diverse array of downstream NLP tasks. Building on recent token-level probing
work, we introduce a novel edge probing task design and construct a broad suite
of sub-sentence tasks derived from the traditional structured NLP pipeline. We
probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena. We find that existing models trained on lan-
guage modeling and translation produce strong representations for syntactic phe-
nomena, but only offer comparably small improvements on semantic tasks over a
non-contextual baseline.

1 INTRODUCTION1

Pretrained word embeddings (Mikolov et al., 2013; Pennington et al., 2014) are a staple tool for
NLP. These models provide continuous representations for word types, typically learned from co-
occurrence statistics on unlabeled data, and improve generalization of downstream models across
many domains. Recently, a number of models have been proposed for contextualized word embed-
dings. Instead of using a single, fixed vector per word type, these models run a pretrained encoder
network over the sentence to produce contextual embeddings of each token. The encoder, usually an
LSTM (Hochreiter & Schmidhuber, 1997) or a Transformer (Vaswani et al., 2017), can be trained
on objectives like machine translation (McCann et al., 2017) or language modeling (Peters et al.,
2018a; Radford et al., 2018; Howard & Ruder, 2018; Devlin et al., 2018), for which large amounts
of data are available. The activations of this network–a collection of one vector per token–fit the
same interface as conventional word embeddings, and can be used as a drop-in replacement input to
any model. Applied to popular models, this technique has yielded significant improvements to the
state-of-the-art on several tasks, including constituency parsing (Kitaev & Klein, 2018), semantic
role labeling (He et al., 2018; Strubell et al., 2018), and coreference (Lee et al., 2018), and has out-
performed competing techniques (Kiros et al., 2015; Conneau et al., 2017) that produce fixed-length
representations for entire sentences.

Our goal in this work is to understand where these contextual representations improve over conven-
tional word embeddings. Recent work has explored many token-level properties of these representa-
tions, such as their ability to capture part-of-speech tags (Blevins et al., 2018; Belinkov et al., 2017b;
Shi et al., 2016), morphology (Belinkov et al., 2017a;b), or word-sense disambiguation (Peters et al.,
2018a). Peters et al. (2018b) extends this to constituent phrases, and present a heuristic for unsuper-

⇤Correspondence: iftenney@google.com. This work was partly conducted at the 2018 JSALT work-
shop at Johns Hopkins University.

1This paper has been updated from the original version, primarily to include results on BERT (Devlin et al.,
2018). See Appendix A for a detailed list of changes.
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Abstract

Recent work has presented intriguing results
examining the knowledge contained in lan-
guage models (LMs) by having the LM fill
in the blanks of prompts such as ‘‘Obama

is a by profession’’. These prompts are
usually manually created, and quite possibly
sub-optimal; another prompt such as ‘‘Obama

worked as a ’’ may result in more accurately
predicting the correct profession. Because of
this, given an inappropriate prompt, we might
fail to retrieve facts that the LM does know,
and thus any given prompt only provides a
lower bound estimate of the knowledge con-
tained in an LM. In this paper, we attempt to
more accurately estimate the knowledge con-
tained in LMs by automatically discovering
better prompts to use in this querying process.
Specifically, we propose mining-based and
paraphrasing-based methods to automatically
generate high-quality and diverse prompts,
as well as ensemble methods to combine
answers from different prompts. Extensive
experiments on the LAMA benchmark for
extracting relational knowledge from LMs
demonstrate that our methods can improve
accuracy from 31.1% to 39.6%, providing
a tighter lower bound on what LMs know.
We have released the code and the resulting
LM Prompt And Query Archive (LPAQA) at
https://github.com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-

guage models (LMs) transition from generating

or evaluating the fluency of natural text (Mikolov

and Zweig, 2012; Merity et al., 2018; Melis et al.,

2018; Gamon et al., 2005) to being a powerful

tool for text understanding. This understanding has

mainly been achieved through the use of language

modeling as a pre-training task for feature extrac-

tors, where the hidden vectors learned through a

language modeling objective are then used in

∗ The first two authors contributed equally.

down-stream language understanding systems

(Dai and Le, 2015; Melamud et al., 2016; Peters

et al., 2018; Devlin et al., 2019).

Interestingly, it is also becoming apparent that

LMs1 themselves can be used as a tool for text

understanding by formulating queries in natural

language and either generating textual answers

directly (McCann et al., 2018; Radford et al.,

2019), or assessing multiple choices and picking

the most likely one (Zweig and Burges, 2011;

Rajani et al., 2019). For example, LMs have been

used to answer factoid questions (Radford et al.,

2019), answer common sense queries (Trinh and

Le, 2018; Sap et al., 2019), or extract factual

knowledge about relations between entities

(Petroni et al., 2019; Baldini Soares et al.,

2019). Regardless of the end task, the knowledge

contained in LMs is probed by providing a prompt,

and letting the LM either generate the continuation

of a prefix (e.g., ‘‘Barack Obama was born in ’’),

or predict missing words in a cloze-style template

(e.g., ‘‘Barack Obama is a by profession’’).

However, while this paradigm has been used to

achieve a number of intriguing results regarding

the knowledge expressed by LMs, they usually

rely on prompts that were manually created

based on the intuition of the experimenter. These

manually created prompts (e.g., ‘‘Barack Obama

was born in ’’) might be sub-optimal because

LMs might have learned target knowledge from

substantially different contexts (e.g., ‘‘The birth

place of Barack Obama is Honolulu, Hawaii.’’)

during their training. Thus it is quite possible that

a fact that the LM does know cannot be retrieved

due to the prompts not being effective queries

for the fact. Thus, existing results are simply a

lower bound on the extent of knowledge contained

1Some models we use in this paper, e.g., BERT (Devlin

et al., 2019), are bi-directional, and do not directly define

probability distribution over text, which is the underlying

definition of an LM. Nonetheless, we call them LMs for

simplicity.

423

Transactions of the Association for Computational Linguistics, vol. 8, pp. 423–438, 2020. https://doi.org/10.1162/tacl a 00324
Action Editor: Timothy Baldwin. Submission batch: 12/2019; Revision batch: 3/2020; Published 7/2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

How Can We Know What Language Models Know?

Zhengbao Jiang1∗ Frank F. Xu1∗ Jun Araki2 Graham Neubig1

1Language Technologies Institute, Carnegie Mellon University
2Bosch Research North America

{zhengbaj,fangzhex,gneubig}@cs.cmu.edu jun.araki@us.bosch.com

Abstract

Recent work has presented intriguing results
examining the knowledge contained in lan-
guage models (LMs) by having the LM fill
in the blanks of prompts such as ‘‘Obama

is a by profession’’. These prompts are
usually manually created, and quite possibly
sub-optimal; another prompt such as ‘‘Obama

worked as a ’’ may result in more accurately
predicting the correct profession. Because of
this, given an inappropriate prompt, we might
fail to retrieve facts that the LM does know,
and thus any given prompt only provides a
lower bound estimate of the knowledge con-
tained in an LM. In this paper, we attempt to
more accurately estimate the knowledge con-
tained in LMs by automatically discovering
better prompts to use in this querying process.
Specifically, we propose mining-based and
paraphrasing-based methods to automatically
generate high-quality and diverse prompts,
as well as ensemble methods to combine
answers from different prompts. Extensive
experiments on the LAMA benchmark for
extracting relational knowledge from LMs
demonstrate that our methods can improve
accuracy from 31.1% to 39.6%, providing
a tighter lower bound on what LMs know.
We have released the code and the resulting
LM Prompt And Query Archive (LPAQA) at
https://github.com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-

guage models (LMs) transition from generating

or evaluating the fluency of natural text (Mikolov

and Zweig, 2012; Merity et al., 2018; Melis et al.,

2018; Gamon et al., 2005) to being a powerful

tool for text understanding. This understanding has

mainly been achieved through the use of language

modeling as a pre-training task for feature extrac-

tors, where the hidden vectors learned through a

language modeling objective are then used in

∗ The first two authors contributed equally.

down-stream language understanding systems

(Dai and Le, 2015; Melamud et al., 2016; Peters

et al., 2018; Devlin et al., 2019).

Interestingly, it is also becoming apparent that

LMs1 themselves can be used as a tool for text

understanding by formulating queries in natural

language and either generating textual answers

directly (McCann et al., 2018; Radford et al.,

2019), or assessing multiple choices and picking

the most likely one (Zweig and Burges, 2011;

Rajani et al., 2019). For example, LMs have been

used to answer factoid questions (Radford et al.,

2019), answer common sense queries (Trinh and

Le, 2018; Sap et al., 2019), or extract factual

knowledge about relations between entities

(Petroni et al., 2019; Baldini Soares et al.,

2019). Regardless of the end task, the knowledge

contained in LMs is probed by providing a prompt,

and letting the LM either generate the continuation

of a prefix (e.g., ‘‘Barack Obama was born in ’’),

or predict missing words in a cloze-style template

(e.g., ‘‘Barack Obama is a by profession’’).

However, while this paradigm has been used to

achieve a number of intriguing results regarding

the knowledge expressed by LMs, they usually

rely on prompts that were manually created

based on the intuition of the experimenter. These

manually created prompts (e.g., ‘‘Barack Obama

was born in ’’) might be sub-optimal because

LMs might have learned target knowledge from

substantially different contexts (e.g., ‘‘The birth

place of Barack Obama is Honolulu, Hawaii.’’)

during their training. Thus it is quite possible that

a fact that the LM does know cannot be retrieved

due to the prompts not being effective queries

for the fact. Thus, existing results are simply a

lower bound on the extent of knowledge contained

1Some models we use in this paper, e.g., BERT (Devlin

et al., 2019), are bi-directional, and do not directly define

probability distribution over text, which is the underlying

definition of an LM. Nonetheless, we call them LMs for

simplicity.

423

Transactions of the Association for Computational Linguistics, vol. 8, pp. 423–438, 2020. https://doi.org/10.1162/tacl a 00324
Action Editor: Timothy Baldwin. Submission batch: 12/2019; Revision batch: 3/2020; Published 7/2020.

c© 2020 Association for Computational Linguistics. Distributed under a CC-BY 4.0 license.

(2020)

implicitly encode rich contextual word semantics and sentence-level grammar
Large Language Models  infer representations that
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Abstract

Recent work has improved our ability to
detect linguistic knowledge in word repre-
sentations. However, current methods for
detecting syntactic knowledge do not test
whether syntax trees are represented in their
entirety. In this work, we propose a structural

probe, which evaluates whether syntax trees
are embedded in a linear transformation of a
neural network’s word representation space.
The probe identifies a linear transformation
under which squared L2 distance encodes the
distance between words in the parse tree, and
one in which squared L2 norm encodes depth
in the parse tree. Using our probe, we show
that such transformations exist for both ELMo
and BERT but not in baselines, providing
evidence that entire syntax trees are embedded
implicitly in deep models’ vector geometry.

1 Introduction

As pretrained deep models that build contextual-
ized representations of language continue to pro-
vide gains on NLP benchmarks, understanding
what they learn is increasingly important. To this
end, probing methods are designed to evaluate the
extent to which representations of language en-
code particular knowledge of interest, like part-of-
speech (Belinkov et al., 2017), morphology (Peters
et al., 2018a), or sentence length (Adi et al., 2017).
Such methods work by specifying a probe (Con-
neau et al., 2018; Hupkes et al., 2018), a supervised
model for finding information in a representation.

Of particular interest, both for linguistics
and for building better models, is whether deep
models’ representations encode syntax (Linzen,
2018). Despite recent work (Kuncoro et al., 2018;
Peters et al., 2018b; Tenney et al., 2019), open
questions remain as to whether deep contextual
models encode entire parse trees in their word
representations.

In this work, we propose a structural probe, a
simple model which tests whether syntax trees are
consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
approximated for each model. If such transfor-
mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees – even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
property of the word representation space, akin to
vector offsets encoding word analogies (Mikolov
et al., 2013). Using our probe, we conduct a tar-
geted case study, showing that ELMo (Peters et al.,
2018a) and BERT (Devlin et al., 2019) representa-
tions embed parse trees with high consistency in
contrast to baselines, and in a low-rank space.1

In summary, we contribute a simple structural
probe for finding syntax in word representations
(§2), and experiments providing insights into
and examples of how a low-rank transformation
recovers parse trees from ELMo and BERT rep-
resentations (§3,4). Finally, we discuss our probe
and limitations in the context of recent work (§5).

2 Methods

Our goal is to design a simple method for testing
whether a neural network embeds each sentence’s

1We release our code at https://github.com/
john-hewitt/structural-probes.
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

⇤Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can
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ABSTRACT

Contextualized representation models such as ELMo (Peters et al., 2018a) and
BERT (Devlin et al., 2018) have recently achieved state-of-the-art results on a
diverse array of downstream NLP tasks. Building on recent token-level probing
work, we introduce a novel edge probing task design and construct a broad suite
of sub-sentence tasks derived from the traditional structured NLP pipeline. We
probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena. We find that existing models trained on lan-
guage modeling and translation produce strong representations for syntactic phe-
nomena, but only offer comparably small improvements on semantic tasks over a
non-contextual baseline.

1 INTRODUCTION1

Pretrained word embeddings (Mikolov et al., 2013; Pennington et al., 2014) are a staple tool for
NLP. These models provide continuous representations for word types, typically learned from co-
occurrence statistics on unlabeled data, and improve generalization of downstream models across
many domains. Recently, a number of models have been proposed for contextualized word embed-
dings. Instead of using a single, fixed vector per word type, these models run a pretrained encoder
network over the sentence to produce contextual embeddings of each token. The encoder, usually an
LSTM (Hochreiter & Schmidhuber, 1997) or a Transformer (Vaswani et al., 2017), can be trained
on objectives like machine translation (McCann et al., 2017) or language modeling (Peters et al.,
2018a; Radford et al., 2018; Howard & Ruder, 2018; Devlin et al., 2018), for which large amounts
of data are available. The activations of this network–a collection of one vector per token–fit the
same interface as conventional word embeddings, and can be used as a drop-in replacement input to
any model. Applied to popular models, this technique has yielded significant improvements to the
state-of-the-art on several tasks, including constituency parsing (Kitaev & Klein, 2018), semantic
role labeling (He et al., 2018; Strubell et al., 2018), and coreference (Lee et al., 2018), and has out-
performed competing techniques (Kiros et al., 2015; Conneau et al., 2017) that produce fixed-length
representations for entire sentences.

Our goal in this work is to understand where these contextual representations improve over conven-
tional word embeddings. Recent work has explored many token-level properties of these representa-
tions, such as their ability to capture part-of-speech tags (Blevins et al., 2018; Belinkov et al., 2017b;
Shi et al., 2016), morphology (Belinkov et al., 2017a;b), or word-sense disambiguation (Peters et al.,
2018a). Peters et al. (2018b) extends this to constituent phrases, and present a heuristic for unsuper-

⇤Correspondence: iftenney@google.com. This work was partly conducted at the 2018 JSALT work-
shop at Johns Hopkins University.

1This paper has been updated from the original version, primarily to include results on BERT (Devlin et al.,
2018). See Appendix A for a detailed list of changes.
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Abstract

Recent work has presented intriguing results
examining the knowledge contained in lan-
guage models (LMs) by having the LM fill
in the blanks of prompts such as ‘‘Obama

is a by profession’’. These prompts are
usually manually created, and quite possibly
sub-optimal; another prompt such as ‘‘Obama

worked as a ’’ may result in more accurately
predicting the correct profession. Because of
this, given an inappropriate prompt, we might
fail to retrieve facts that the LM does know,
and thus any given prompt only provides a
lower bound estimate of the knowledge con-
tained in an LM. In this paper, we attempt to
more accurately estimate the knowledge con-
tained in LMs by automatically discovering
better prompts to use in this querying process.
Specifically, we propose mining-based and
paraphrasing-based methods to automatically
generate high-quality and diverse prompts,
as well as ensemble methods to combine
answers from different prompts. Extensive
experiments on the LAMA benchmark for
extracting relational knowledge from LMs
demonstrate that our methods can improve
accuracy from 31.1% to 39.6%, providing
a tighter lower bound on what LMs know.
We have released the code and the resulting
LM Prompt And Query Archive (LPAQA) at
https://github.com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-

guage models (LMs) transition from generating

or evaluating the fluency of natural text (Mikolov

and Zweig, 2012; Merity et al., 2018; Melis et al.,

2018; Gamon et al., 2005) to being a powerful

tool for text understanding. This understanding has

mainly been achieved through the use of language

modeling as a pre-training task for feature extrac-

tors, where the hidden vectors learned through a

language modeling objective are then used in

∗ The first two authors contributed equally.

down-stream language understanding systems

(Dai and Le, 2015; Melamud et al., 2016; Peters

et al., 2018; Devlin et al., 2019).

Interestingly, it is also becoming apparent that

LMs1 themselves can be used as a tool for text

understanding by formulating queries in natural

language and either generating textual answers

directly (McCann et al., 2018; Radford et al.,

2019), or assessing multiple choices and picking

the most likely one (Zweig and Burges, 2011;

Rajani et al., 2019). For example, LMs have been

used to answer factoid questions (Radford et al.,

2019), answer common sense queries (Trinh and

Le, 2018; Sap et al., 2019), or extract factual

knowledge about relations between entities

(Petroni et al., 2019; Baldini Soares et al.,

2019). Regardless of the end task, the knowledge

contained in LMs is probed by providing a prompt,

and letting the LM either generate the continuation

of a prefix (e.g., ‘‘Barack Obama was born in ’’),

or predict missing words in a cloze-style template

(e.g., ‘‘Barack Obama is a by profession’’).

However, while this paradigm has been used to

achieve a number of intriguing results regarding

the knowledge expressed by LMs, they usually

rely on prompts that were manually created

based on the intuition of the experimenter. These

manually created prompts (e.g., ‘‘Barack Obama

was born in ’’) might be sub-optimal because

LMs might have learned target knowledge from

substantially different contexts (e.g., ‘‘The birth

place of Barack Obama is Honolulu, Hawaii.’’)

during their training. Thus it is quite possible that

a fact that the LM does know cannot be retrieved

due to the prompts not being effective queries

for the fact. Thus, existing results are simply a

lower bound on the extent of knowledge contained

1Some models we use in this paper, e.g., BERT (Devlin

et al., 2019), are bi-directional, and do not directly define

probability distribution over text, which is the underlying

definition of an LM. Nonetheless, we call them LMs for

simplicity.
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Abstract

Recent work has presented intriguing results
examining the knowledge contained in lan-
guage models (LMs) by having the LM fill
in the blanks of prompts such as ‘‘Obama

is a by profession’’. These prompts are
usually manually created, and quite possibly
sub-optimal; another prompt such as ‘‘Obama

worked as a ’’ may result in more accurately
predicting the correct profession. Because of
this, given an inappropriate prompt, we might
fail to retrieve facts that the LM does know,
and thus any given prompt only provides a
lower bound estimate of the knowledge con-
tained in an LM. In this paper, we attempt to
more accurately estimate the knowledge con-
tained in LMs by automatically discovering
better prompts to use in this querying process.
Specifically, we propose mining-based and
paraphrasing-based methods to automatically
generate high-quality and diverse prompts,
as well as ensemble methods to combine
answers from different prompts. Extensive
experiments on the LAMA benchmark for
extracting relational knowledge from LMs
demonstrate that our methods can improve
accuracy from 31.1% to 39.6%, providing
a tighter lower bound on what LMs know.
We have released the code and the resulting
LM Prompt And Query Archive (LPAQA) at
https://github.com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-

guage models (LMs) transition from generating

or evaluating the fluency of natural text (Mikolov

and Zweig, 2012; Merity et al., 2018; Melis et al.,

2018; Gamon et al., 2005) to being a powerful

tool for text understanding. This understanding has

mainly been achieved through the use of language

modeling as a pre-training task for feature extrac-

tors, where the hidden vectors learned through a

language modeling objective are then used in

∗ The first two authors contributed equally.

down-stream language understanding systems

(Dai and Le, 2015; Melamud et al., 2016; Peters

et al., 2018; Devlin et al., 2019).

Interestingly, it is also becoming apparent that

LMs1 themselves can be used as a tool for text
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a fact that the LM does know cannot be retrieved
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for the fact. Thus, existing results are simply a

lower bound on the extent of knowledge contained
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Abstract
Modern deep neural networks achieve impressive performance in engineer-
ing applications that require extensive linguistic skills, such asmachine trans-
lation. This success has sparked interest in probing whether these models
are inducing human-like grammatical knowledge from the raw data they
are exposed to and, consequently, whether they can shed new light on long-
standing debates concerning the innate structure necessary for language ac-
quisition. In this article, we survey representative studies of the syntactic
abilities of deep networks and discuss the broader implications that this work
has for theoretical linguistics.
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implicitly encode rich contextual word semantics and sentence-level grammar
Large Language Models  infer representations that
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Abstract

Recent work has improved our ability to
detect linguistic knowledge in word repre-
sentations. However, current methods for
detecting syntactic knowledge do not test
whether syntax trees are represented in their
entirety. In this work, we propose a structural

probe, which evaluates whether syntax trees
are embedded in a linear transformation of a
neural network’s word representation space.
The probe identifies a linear transformation
under which squared L2 distance encodes the
distance between words in the parse tree, and
one in which squared L2 norm encodes depth
in the parse tree. Using our probe, we show
that such transformations exist for both ELMo
and BERT but not in baselines, providing
evidence that entire syntax trees are embedded
implicitly in deep models’ vector geometry.

1 Introduction

As pretrained deep models that build contextual-
ized representations of language continue to pro-
vide gains on NLP benchmarks, understanding
what they learn is increasingly important. To this
end, probing methods are designed to evaluate the
extent to which representations of language en-
code particular knowledge of interest, like part-of-
speech (Belinkov et al., 2017), morphology (Peters
et al., 2018a), or sentence length (Adi et al., 2017).
Such methods work by specifying a probe (Con-
neau et al., 2018; Hupkes et al., 2018), a supervised
model for finding information in a representation.

Of particular interest, both for linguistics
and for building better models, is whether deep
models’ representations encode syntax (Linzen,
2018). Despite recent work (Kuncoro et al., 2018;
Peters et al., 2018b; Tenney et al., 2019), open
questions remain as to whether deep contextual
models encode entire parse trees in their word
representations.

In this work, we propose a structural probe, a
simple model which tests whether syntax trees are
consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
approximated for each model. If such transfor-
mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees – even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
property of the word representation space, akin to
vector offsets encoding word analogies (Mikolov
et al., 2013). Using our probe, we conduct a tar-
geted case study, showing that ELMo (Peters et al.,
2018a) and BERT (Devlin et al., 2019) representa-
tions embed parse trees with high consistency in
contrast to baselines, and in a low-rank space.1

In summary, we contribute a simple structural
probe for finding syntax in word representations
(§2), and experiments providing insights into
and examples of how a low-rank transformation
recovers parse trees from ELMo and BERT rep-
resentations (§3,4). Finally, we discuss our probe
and limitations in the context of recent work (§5).

2 Methods

Our goal is to design a simple method for testing
whether a neural network embeds each sentence’s

1We release our code at https://github.com/
john-hewitt/structural-probes.
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

⇤Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can
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ABSTRACT

Contextualized representation models such as ELMo (Peters et al., 2018a) and
BERT (Devlin et al., 2018) have recently achieved state-of-the-art results on a
diverse array of downstream NLP tasks. Building on recent token-level probing
work, we introduce a novel edge probing task design and construct a broad suite
of sub-sentence tasks derived from the traditional structured NLP pipeline. We
probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena. We find that existing models trained on lan-
guage modeling and translation produce strong representations for syntactic phe-
nomena, but only offer comparably small improvements on semantic tasks over a
non-contextual baseline.

1 INTRODUCTION1

Pretrained word embeddings (Mikolov et al., 2013; Pennington et al., 2014) are a staple tool for
NLP. These models provide continuous representations for word types, typically learned from co-
occurrence statistics on unlabeled data, and improve generalization of downstream models across
many domains. Recently, a number of models have been proposed for contextualized word embed-
dings. Instead of using a single, fixed vector per word type, these models run a pretrained encoder
network over the sentence to produce contextual embeddings of each token. The encoder, usually an
LSTM (Hochreiter & Schmidhuber, 1997) or a Transformer (Vaswani et al., 2017), can be trained
on objectives like machine translation (McCann et al., 2017) or language modeling (Peters et al.,
2018a; Radford et al., 2018; Howard & Ruder, 2018; Devlin et al., 2018), for which large amounts
of data are available. The activations of this network–a collection of one vector per token–fit the
same interface as conventional word embeddings, and can be used as a drop-in replacement input to
any model. Applied to popular models, this technique has yielded significant improvements to the
state-of-the-art on several tasks, including constituency parsing (Kitaev & Klein, 2018), semantic
role labeling (He et al., 2018; Strubell et al., 2018), and coreference (Lee et al., 2018), and has out-
performed competing techniques (Kiros et al., 2015; Conneau et al., 2017) that produce fixed-length
representations for entire sentences.

Our goal in this work is to understand where these contextual representations improve over conven-
tional word embeddings. Recent work has explored many token-level properties of these representa-
tions, such as their ability to capture part-of-speech tags (Blevins et al., 2018; Belinkov et al., 2017b;
Shi et al., 2016), morphology (Belinkov et al., 2017a;b), or word-sense disambiguation (Peters et al.,
2018a). Peters et al. (2018b) extends this to constituent phrases, and present a heuristic for unsuper-

⇤Correspondence: iftenney@google.com. This work was partly conducted at the 2018 JSALT work-
shop at Johns Hopkins University.

1This paper has been updated from the original version, primarily to include results on BERT (Devlin et al.,
2018). See Appendix A for a detailed list of changes.
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of sub-sentence tasks derived from the traditional structured NLP pipeline. We
probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena. We find that existing models trained on lan-
guage modeling and translation produce strong representations for syntactic phe-
nomena, but only offer comparably small improvements on semantic tasks over a
non-contextual baseline.

1 INTRODUCTION1

Pretrained word embeddings (Mikolov et al., 2013; Pennington et al., 2014) are a staple tool for
NLP. These models provide continuous representations for word types, typically learned from co-
occurrence statistics on unlabeled data, and improve generalization of downstream models across
many domains. Recently, a number of models have been proposed for contextualized word embed-
dings. Instead of using a single, fixed vector per word type, these models run a pretrained encoder
network over the sentence to produce contextual embeddings of each token. The encoder, usually an
LSTM (Hochreiter & Schmidhuber, 1997) or a Transformer (Vaswani et al., 2017), can be trained
on objectives like machine translation (McCann et al., 2017) or language modeling (Peters et al.,
2018a; Radford et al., 2018; Howard & Ruder, 2018; Devlin et al., 2018), for which large amounts
of data are available. The activations of this network–a collection of one vector per token–fit the
same interface as conventional word embeddings, and can be used as a drop-in replacement input to
any model. Applied to popular models, this technique has yielded significant improvements to the
state-of-the-art on several tasks, including constituency parsing (Kitaev & Klein, 2018), semantic
role labeling (He et al., 2018; Strubell et al., 2018), and coreference (Lee et al., 2018), and has out-
performed competing techniques (Kiros et al., 2015; Conneau et al., 2017) that produce fixed-length
representations for entire sentences.

Our goal in this work is to understand where these contextual representations improve over conven-
tional word embeddings. Recent work has explored many token-level properties of these representa-
tions, such as their ability to capture part-of-speech tags (Blevins et al., 2018; Belinkov et al., 2017b;
Shi et al., 2016), morphology (Belinkov et al., 2017a;b), or word-sense disambiguation (Peters et al.,
2018a). Peters et al. (2018b) extends this to constituent phrases, and present a heuristic for unsuper-

⇤Correspondence: iftenney@google.com. This work was partly conducted at the 2018 JSALT work-
shop at Johns Hopkins University.

1This paper has been updated from the original version, primarily to include results on BERT (Devlin et al.,
2018). See Appendix A for a detailed list of changes.
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Abstract

Recent work has presented intriguing results
examining the knowledge contained in lan-
guage models (LMs) by having the LM fill
in the blanks of prompts such as ‘‘Obama

is a by profession’’. These prompts are
usually manually created, and quite possibly
sub-optimal; another prompt such as ‘‘Obama

worked as a ’’ may result in more accurately
predicting the correct profession. Because of
this, given an inappropriate prompt, we might
fail to retrieve facts that the LM does know,
and thus any given prompt only provides a
lower bound estimate of the knowledge con-
tained in an LM. In this paper, we attempt to
more accurately estimate the knowledge con-
tained in LMs by automatically discovering
better prompts to use in this querying process.
Specifically, we propose mining-based and
paraphrasing-based methods to automatically
generate high-quality and diverse prompts,
as well as ensemble methods to combine
answers from different prompts. Extensive
experiments on the LAMA benchmark for
extracting relational knowledge from LMs
demonstrate that our methods can improve
accuracy from 31.1% to 39.6%, providing
a tighter lower bound on what LMs know.
We have released the code and the resulting
LM Prompt And Query Archive (LPAQA) at
https://github.com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-

guage models (LMs) transition from generating

or evaluating the fluency of natural text (Mikolov

and Zweig, 2012; Merity et al., 2018; Melis et al.,

2018; Gamon et al., 2005) to being a powerful

tool for text understanding. This understanding has

mainly been achieved through the use of language

modeling as a pre-training task for feature extrac-

tors, where the hidden vectors learned through a

language modeling objective are then used in

∗ The first two authors contributed equally.

down-stream language understanding systems

(Dai and Le, 2015; Melamud et al., 2016; Peters

et al., 2018; Devlin et al., 2019).

Interestingly, it is also becoming apparent that

LMs1 themselves can be used as a tool for text

understanding by formulating queries in natural

language and either generating textual answers

directly (McCann et al., 2018; Radford et al.,

2019), or assessing multiple choices and picking

the most likely one (Zweig and Burges, 2011;

Rajani et al., 2019). For example, LMs have been

used to answer factoid questions (Radford et al.,

2019), answer common sense queries (Trinh and

Le, 2018; Sap et al., 2019), or extract factual

knowledge about relations between entities

(Petroni et al., 2019; Baldini Soares et al.,

2019). Regardless of the end task, the knowledge

contained in LMs is probed by providing a prompt,

and letting the LM either generate the continuation

of a prefix (e.g., ‘‘Barack Obama was born in ’’),

or predict missing words in a cloze-style template

(e.g., ‘‘Barack Obama is a by profession’’).

However, while this paradigm has been used to

achieve a number of intriguing results regarding

the knowledge expressed by LMs, they usually

rely on prompts that were manually created

based on the intuition of the experimenter. These

manually created prompts (e.g., ‘‘Barack Obama

was born in ’’) might be sub-optimal because

LMs might have learned target knowledge from

substantially different contexts (e.g., ‘‘The birth

place of Barack Obama is Honolulu, Hawaii.’’)

during their training. Thus it is quite possible that

a fact that the LM does know cannot be retrieved

due to the prompts not being effective queries

for the fact. Thus, existing results are simply a

lower bound on the extent of knowledge contained

1Some models we use in this paper, e.g., BERT (Devlin

et al., 2019), are bi-directional, and do not directly define

probability distribution over text, which is the underlying

definition of an LM. Nonetheless, we call them LMs for

simplicity.
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Abstract
Modern deep neural networks achieve impressive performance in engineer-
ing applications that require extensive linguistic skills, such asmachine trans-
lation. This success has sparked interest in probing whether these models
are inducing human-like grammatical knowledge from the raw data they
are exposed to and, consequently, whether they can shed new light on long-
standing debates concerning the innate structure necessary for language ac-
quisition. In this article, we survey representative studies of the syntactic
abilities of deep networks and discuss the broader implications that this work
has for theoretical linguistics.
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Abstract

Pre-training by language modeling has become
a popular and successful approach to NLP
tasks, but we have yet to understand exactly
what linguistic capacities these pre-training
processes confer upon models. In this paper
we introduce a suite of diagnostics drawn from
human language experiments, which allow us
to ask targeted questions about information
used by language models for generating pre-
dictions in context. As a case study, we apply
these diagnostics to the popular BERT model,
finding that it can generally distinguish good
from bad completions involving shared cate-
gory or role reversal, albeit with less sensitiv-
ity than humans, and it robustly retrieves noun
hypernyms, but it struggles with challenging
inference and role-based event prediction—
and, in particular, it shows clear insensitivity
to the contextual impacts of negation.

1 Introduction

Pre-training of NLP models with a language mod-
eling objective has recently gained popularity
as a precursor to task-specific fine-tuning. Pre-
trained models like BERT (Devlin et al., 2019)
and ELMo (Peters et al., 2018a) have advanced
the state of the art in a wide variety of tasks,
suggesting that these models acquire valuable,
generalizable linguistic competence during the
pre-training process. However, though we have
established the benefits of language model pre-
training, we have yet to understand what exactly
about language these models learn during that
process.

This paper aims to improve our understanding
of what language models (LMs) know about lan-
guage, by introducing a set of diagnostics target-
ing a range of linguistic capacities drawn from
human psycholinguistic experiments. Because of

their origin in psycholinguistics, these diagnostics
have two distinct advantages: They are carefully
controlled to ask targeted questions about linguis-
tic capabilities, and they are designed to ask these
questions by examining word predictions in con-
text, which allows us to study LMs without any
need for task-specific fine-tuning.

Beyond these advantages, our diagnostics dis-
tinguish themselves from existing tests for LMs in
two primary ways. First, these tests have been
chosen specifically for their capacity to reveal
insensitivities in predictive models, as evidenced
by patterns that they elicit in human brain re-
sponses. Second, each of these tests targets a
set of linguistic capacities that extend beyond
the primarily syntactic focus seen in existing
LM diagnostics—we have tests targeting com-
monsense/pragmatic inference, semantic roles and
event knowledge, category membership, and ne-
gation. Each of our diagnostics is set up to sup-
port tests of both word prediction accuracy and
sensitivity to distinctions between good and bad
context completions. Although we focus on the
BERT model here as an illustrative case study,
these diagnostics are applicable for testing of any
language model.

This paper makes two main contributions. First,
we introduce a new set of targeted diagnostics
for assessing linguistic capacities in language
models.1 Second, we apply these tests to shed
light on strengths and weaknesses of the popular
BERT model. We find that BERT struggles with
challenging commonsense/pragmatic inferences
and role-based event prediction; that it is generally
robust on within-category distinctions and role
reversals, but with lower sensitivity than humans;
and that it is very strong at associating nouns with
hypernyms. Most strikingly, however, we find
that BERT fails completely to show generalizable

1All test sets and experiment code are made available
here: https://github.com/aetting/lm-diagnostics.
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implicitly encode rich contextual word semantics and sentence-level grammar
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ABSTRACT

Contextualized representation models such as ELMo (Peters et al., 2018a) and
BERT (Devlin et al., 2018) have recently achieved state-of-the-art results on a
diverse array of downstream NLP tasks. Building on recent token-level probing
work, we introduce a novel edge probing task design and construct a broad suite
of sub-sentence tasks derived from the traditional structured NLP pipeline. We
probe word-level contextual representations from four recent models and inves-
tigate how they encode sentence structure across a range of syntactic, semantic,
local, and long-range phenomena. We find that existing models trained on lan-
guage modeling and translation produce strong representations for syntactic phe-
nomena, but only offer comparably small improvements on semantic tasks over a
non-contextual baseline.

1 INTRODUCTION1

Pretrained word embeddings (Mikolov et al., 2013; Pennington et al., 2014) are a staple tool for
NLP. These models provide continuous representations for word types, typically learned from co-
occurrence statistics on unlabeled data, and improve generalization of downstream models across
many domains. Recently, a number of models have been proposed for contextualized word embed-
dings. Instead of using a single, fixed vector per word type, these models run a pretrained encoder
network over the sentence to produce contextual embeddings of each token. The encoder, usually an
LSTM (Hochreiter & Schmidhuber, 1997) or a Transformer (Vaswani et al., 2017), can be trained
on objectives like machine translation (McCann et al., 2017) or language modeling (Peters et al.,
2018a; Radford et al., 2018; Howard & Ruder, 2018; Devlin et al., 2018), for which large amounts
of data are available. The activations of this network–a collection of one vector per token–fit the
same interface as conventional word embeddings, and can be used as a drop-in replacement input to
any model. Applied to popular models, this technique has yielded significant improvements to the
state-of-the-art on several tasks, including constituency parsing (Kitaev & Klein, 2018), semantic
role labeling (He et al., 2018; Strubell et al., 2018), and coreference (Lee et al., 2018), and has out-
performed competing techniques (Kiros et al., 2015; Conneau et al., 2017) that produce fixed-length
representations for entire sentences.

Our goal in this work is to understand where these contextual representations improve over conven-
tional word embeddings. Recent work has explored many token-level properties of these representa-
tions, such as their ability to capture part-of-speech tags (Blevins et al., 2018; Belinkov et al., 2017b;
Shi et al., 2016), morphology (Belinkov et al., 2017a;b), or word-sense disambiguation (Peters et al.,
2018a). Peters et al. (2018b) extends this to constituent phrases, and present a heuristic for unsuper-

⇤Correspondence: iftenney@google.com. This work was partly conducted at the 2018 JSALT work-
shop at Johns Hopkins University.

1This paper has been updated from the original version, primarily to include results on BERT (Devlin et al.,
2018). See Appendix A for a detailed list of changes.
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ing applications that require extensive linguistic skills, such asmachine trans-
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are inducing human-like grammatical knowledge from the raw data they
are exposed to and, consequently, whether they can shed new light on long-
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quisition. In this article, we survey representative studies of the syntactic
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has for theoretical linguistics.
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Abstract

Recent work has presented intriguing results
examining the knowledge contained in lan-
guage models (LMs) by having the LM fill
in the blanks of prompts such as ‘‘Obama

is a by profession’’. These prompts are
usually manually created, and quite possibly
sub-optimal; another prompt such as ‘‘Obama

worked as a ’’ may result in more accurately
predicting the correct profession. Because of
this, given an inappropriate prompt, we might
fail to retrieve facts that the LM does know,
and thus any given prompt only provides a
lower bound estimate of the knowledge con-
tained in an LM. In this paper, we attempt to
more accurately estimate the knowledge con-
tained in LMs by automatically discovering
better prompts to use in this querying process.
Specifically, we propose mining-based and
paraphrasing-based methods to automatically
generate high-quality and diverse prompts,
as well as ensemble methods to combine
answers from different prompts. Extensive
experiments on the LAMA benchmark for
extracting relational knowledge from LMs
demonstrate that our methods can improve
accuracy from 31.1% to 39.6%, providing
a tighter lower bound on what LMs know.
We have released the code and the resulting
LM Prompt And Query Archive (LPAQA) at
https://github.com/jzbjyb/LPAQA.

1 Introduction

Recent years have seen the primary role of lan-

guage models (LMs) transition from generating

or evaluating the fluency of natural text (Mikolov

and Zweig, 2012; Merity et al., 2018; Melis et al.,

2018; Gamon et al., 2005) to being a powerful

tool for text understanding. This understanding has

mainly been achieved through the use of language

modeling as a pre-training task for feature extrac-

tors, where the hidden vectors learned through a

language modeling objective are then used in

∗ The first two authors contributed equally.

down-stream language understanding systems

(Dai and Le, 2015; Melamud et al., 2016; Peters

et al., 2018; Devlin et al., 2019).

Interestingly, it is also becoming apparent that

LMs1 themselves can be used as a tool for text

understanding by formulating queries in natural

language and either generating textual answers

directly (McCann et al., 2018; Radford et al.,

2019), or assessing multiple choices and picking

the most likely one (Zweig and Burges, 2011;

Rajani et al., 2019). For example, LMs have been

used to answer factoid questions (Radford et al.,

2019), answer common sense queries (Trinh and

Le, 2018; Sap et al., 2019), or extract factual

knowledge about relations between entities

(Petroni et al., 2019; Baldini Soares et al.,

2019). Regardless of the end task, the knowledge

contained in LMs is probed by providing a prompt,

and letting the LM either generate the continuation

of a prefix (e.g., ‘‘Barack Obama was born in ’’),

or predict missing words in a cloze-style template

(e.g., ‘‘Barack Obama is a by profession’’).

However, while this paradigm has been used to

achieve a number of intriguing results regarding

the knowledge expressed by LMs, they usually

rely on prompts that were manually created

based on the intuition of the experimenter. These

manually created prompts (e.g., ‘‘Barack Obama

was born in ’’) might be sub-optimal because

LMs might have learned target knowledge from

substantially different contexts (e.g., ‘‘The birth

place of Barack Obama is Honolulu, Hawaii.’’)

during their training. Thus it is quite possible that

a fact that the LM does know cannot be retrieved

due to the prompts not being effective queries

for the fact. Thus, existing results are simply a

lower bound on the extent of knowledge contained

1Some models we use in this paper, e.g., BERT (Devlin

et al., 2019), are bi-directional, and do not directly define

probability distribution over text, which is the underlying

definition of an LM. Nonetheless, we call them LMs for

simplicity.
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Abstract

Pre-training by language modeling has become
a popular and successful approach to NLP
tasks, but we have yet to understand exactly
what linguistic capacities these pre-training
processes confer upon models. In this paper
we introduce a suite of diagnostics drawn from
human language experiments, which allow us
to ask targeted questions about information
used by language models for generating pre-
dictions in context. As a case study, we apply
these diagnostics to the popular BERT model,
finding that it can generally distinguish good
from bad completions involving shared cate-
gory or role reversal, albeit with less sensitiv-
ity than humans, and it robustly retrieves noun
hypernyms, but it struggles with challenging
inference and role-based event prediction—
and, in particular, it shows clear insensitivity
to the contextual impacts of negation.

1 Introduction

Pre-training of NLP models with a language mod-
eling objective has recently gained popularity
as a precursor to task-specific fine-tuning. Pre-
trained models like BERT (Devlin et al., 2019)
and ELMo (Peters et al., 2018a) have advanced
the state of the art in a wide variety of tasks,
suggesting that these models acquire valuable,
generalizable linguistic competence during the
pre-training process. However, though we have
established the benefits of language model pre-
training, we have yet to understand what exactly
about language these models learn during that
process.

This paper aims to improve our understanding
of what language models (LMs) know about lan-
guage, by introducing a set of diagnostics target-
ing a range of linguistic capacities drawn from
human psycholinguistic experiments. Because of

their origin in psycholinguistics, these diagnostics
have two distinct advantages: They are carefully
controlled to ask targeted questions about linguis-
tic capabilities, and they are designed to ask these
questions by examining word predictions in con-
text, which allows us to study LMs without any
need for task-specific fine-tuning.

Beyond these advantages, our diagnostics dis-
tinguish themselves from existing tests for LMs in
two primary ways. First, these tests have been
chosen specifically for their capacity to reveal
insensitivities in predictive models, as evidenced
by patterns that they elicit in human brain re-
sponses. Second, each of these tests targets a
set of linguistic capacities that extend beyond
the primarily syntactic focus seen in existing
LM diagnostics—we have tests targeting com-
monsense/pragmatic inference, semantic roles and
event knowledge, category membership, and ne-
gation. Each of our diagnostics is set up to sup-
port tests of both word prediction accuracy and
sensitivity to distinctions between good and bad
context completions. Although we focus on the
BERT model here as an illustrative case study,
these diagnostics are applicable for testing of any
language model.

This paper makes two main contributions. First,
we introduce a new set of targeted diagnostics
for assessing linguistic capacities in language
models.1 Second, we apply these tests to shed
light on strengths and weaknesses of the popular
BERT model. We find that BERT struggles with
challenging commonsense/pragmatic inferences
and role-based event prediction; that it is generally
robust on within-category distinctions and role
reversals, but with lower sensitivity than humans;
and that it is very strong at associating nouns with
hypernyms. Most strikingly, however, we find
that BERT fails completely to show generalizable

1All test sets and experiment code are made available
here: https://github.com/aetting/lm-diagnostics.
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Abstract

Recent work has improved our ability to
detect linguistic knowledge in word repre-
sentations. However, current methods for
detecting syntactic knowledge do not test
whether syntax trees are represented in their
entirety. In this work, we propose a structural

probe, which evaluates whether syntax trees
are embedded in a linear transformation of a
neural network’s word representation space.
The probe identifies a linear transformation
under which squared L2 distance encodes the
distance between words in the parse tree, and
one in which squared L2 norm encodes depth
in the parse tree. Using our probe, we show
that such transformations exist for both ELMo
and BERT but not in baselines, providing
evidence that entire syntax trees are embedded
implicitly in deep models’ vector geometry.

1 Introduction

As pretrained deep models that build contextual-
ized representations of language continue to pro-
vide gains on NLP benchmarks, understanding
what they learn is increasingly important. To this
end, probing methods are designed to evaluate the
extent to which representations of language en-
code particular knowledge of interest, like part-of-
speech (Belinkov et al., 2017), morphology (Peters
et al., 2018a), or sentence length (Adi et al., 2017).
Such methods work by specifying a probe (Con-
neau et al., 2018; Hupkes et al., 2018), a supervised
model for finding information in a representation.

Of particular interest, both for linguistics
and for building better models, is whether deep
models’ representations encode syntax (Linzen,
2018). Despite recent work (Kuncoro et al., 2018;
Peters et al., 2018b; Tenney et al., 2019), open
questions remain as to whether deep contextual
models encode entire parse trees in their word
representations.

In this work, we propose a structural probe, a
simple model which tests whether syntax trees are
consistently embedded in a linear transformation
of a neural network’s word representation space.
Tree structure is embedded if the transformed space
has the property that squared L2 distance between
two words’ vectors corresponds to the number of
edges between the words in the parse tree. To re-
construct edge directions, we hypothesize a linear
transformation under which the squared L2 norm
corresponds to the depth of the word in the parse
tree. Our probe uses supervision to find the trans-
formations under which these properties are best
approximated for each model. If such transfor-
mations exist, they define inner products on the
original space under which squared distances and
norms encode syntax trees – even though the mod-
els being probed were never given trees as input or
supervised to reconstruct them. This is a structural
property of the word representation space, akin to
vector offsets encoding word analogies (Mikolov
et al., 2013). Using our probe, we conduct a tar-
geted case study, showing that ELMo (Peters et al.,
2018a) and BERT (Devlin et al., 2019) representa-
tions embed parse trees with high consistency in
contrast to baselines, and in a low-rank space.1

In summary, we contribute a simple structural
probe for finding syntax in word representations
(§2), and experiments providing insights into
and examples of how a low-rank transformation
recovers parse trees from ELMo and BERT rep-
resentations (§3,4). Finally, we discuss our probe
and limitations in the context of recent work (§5).

2 Methods

Our goal is to design a simple method for testing
whether a neural network embeds each sentence’s

1We release our code at https://github.com/
john-hewitt/structural-probes.
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction

Word embeddings have become an important cor-
nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of

⇤Equal contribution.
1The code is available at https://github.com/

yongjie-lin/bert-opensesame.

a masked language model and sentence adjacency
training objective. Simply using BERT’s represen-
tations in place of traditional embeddings has re-
sulted in state-of-the-art performance on a range of
downstream tasks including summarization (Liu,
2019), question answering and textual entailment
(Devlin et al., 2018). It is still, however, unclear
why BERT representations perform well.

A flurry of recent work (Linzen et al., 2016;
Gulordava et al., 2018; Marvin and Linzen, 2018;
Lakretz et al., 2019) has explored how recurrent
neural language models perform in cases that re-
quire sensitivity to hierarchical syntactic structure,
and study how they do so, particularly in the do-
main of agreement. In these studies, a pre-trained
language model is asked to predict the next word
in a sentence (a verb in the target sentence) follow-
ing a sequence that may include other intervening
nouns with different grammatical features (e.g.,
“the bear by the trees eats...”). The predicted verb
should agree with the subject noun (bear) and not
the attractors (trees), in spite of the latter’s recency.
Such analyses have revealed that LSTMs exhibit
state tracking and explicit notions of word order
for modeling long term dependencies, although
this effect is diluted when sequential and structural
information in a sentence conflict. Further work
by Gulordava et al. (2018) and others (Linzen
and Leonard, 2018; Giulianelli et al., 2018) ar-
gues that RNNs acquire grammatical competence
in agreement that is more abstract than word col-
locations, although language model performance
that requires sensitivity to the phenomena such as
reflexive anaphora, non-local agreement and neg-
ative polarity remains low (Marvin and Linzen,
2018). Meanwhile, studies evaluating which lin-
guistic phenomena are encoded by contextualized
representations (Goldberg, 2019; Wolf, 2019; Ten-
ney et al., 2019) successfully demonstrate that
purely self-attentive architectures like BERT can
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Abstract

How and to what extent does BERT en-
code syntactically-sensitive hierarchical infor-
mation or positionally-sensitive linear infor-
mation? Recent work has shown that contex-
tual representations like BERT perform well
on tasks that require sensitivity to linguis-
tic structure. We present here two studies
which aim to provide a better understanding
of the nature of BERT’s representations. The
first of these focuses on the identification of
structurally-defined elements using diagnostic
classifiers, while the second explores BERT’s
representation of subject-verb agreement and
anaphor-antecedent dependencies through a
quantitative assessment of self-attention vec-
tors. In both cases, we find that BERT en-
codes positional information about word to-
kens well on its lower layers, but switches to
a hierarchically-oriented encoding on higher
layers. We conclude then that BERT’s repre-
sentations do indeed model linguistically rel-
evant aspects of hierarchical structure, though
they do not appear to show the sharp sensitiv-
ity to hierarchical structure that is found in hu-
man processing of reflexive anaphora.1

1 Introduction
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nerstone in any NLP pipeline. Although such
embeddings traditionally involve context-free dis-
tributed representations of words (Mikolov et al.,
2013; Pennington et al., 2014), recent successes
with contextualized representations (Howard and
Ruder, 2018; Peters et al., 2018; Radford et al.,
2019) have led to a paradigm shift. One promi-
nent architecture is BERT (Devlin et al., 2018), a
Transformer-based model that learns bidirectional
encoder representations for words, on the basis of
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This paper explores the knowledge of linguistic structure learned
by large artificial neural networks, trained via self-supervision,
whereby the model simply tries to predict a masked word in a
given context. Human language communication is via sequences
of words, but language understanding requires constructing rich
hierarchical structures that are never observed explicitly. The
mechanisms for this have been a prime mystery of human
language acquisition, while engineering work has mainly pro-
ceeded by supervised learning on treebanks of sentences hand
labeled for this latent structure. However, we demonstrate that
modern deep contextual language models learn major aspects
of this structure, without any explicit supervision. We develop
methods for identifying linguistic hierarchical structure emer-
gent in artificial neural networks and demonstrate that com-
ponents in these models focus on syntactic grammatical rela-
tionships and anaphoric coreference. Indeed, we show that a
linear transformation of learned embeddings in these models
captures parse tree distances to a surprising degree, allowing
approximate reconstruction of the sentence tree structures nor-
mally assumed by linguists. These results help explain why these
models have brought such large improvements across many
language-understanding tasks.
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Human language communication is via sequences of words,
canonically produced as a mainly continuous speech stream

(1). Behind this linear organization is a rich hierarchical language
structure with additional links (such as coreference between
mentions) that needs to be understood by a hearer (or reader).
In Fig. 1, for instance, a hearer has to understand a sentence
structure roughly like the one shown to realize that the chef was
out of food rather than the store.* Language understanding, like
vision, can be seen as an inverse problem (3), where the hearer
has to reconstruct structures and causes from the observed
surface form.

In computational linguistics, the long dominant way of
addressing this structure induction problem has been to hand
design linguistic representations, broadly following proposals
from linguistics proper. Under one set of conventions, the sen-
tence in Fig. 1 would be annotated with the structure shown.
Humans then label many natural language sentences with their
underlying structure. Such datasets of annotated human lan-
guage structure, known as treebanks (4, 5), have fueled much
of the research in the field in the last 25 y. Researchers
train progressively better supervised machine-learning mod-
els on the treebank, which attempt to recover this structure
for any sentence (6–8). This approach has been very effec-
tive as an engineering solution, but beyond the high prac-
tical cost of human labeling, it gives no insight into how
children might approach structure induction from observed
data alone.

Recently, enormous progress has been made in natural lan-
guage representation learning by adopting a self-supervised
learning approach. In self-supervised learning, a system is given
no explicit labeling of raw data, but it is able to construct its

own supervised learning problems by choosing to interpret some
of the data as a “label” to be predicted.† The canonical case
for human language is the language-modeling task of trying
to predict the next word in an utterance based on the tempo-
rally preceding words (Fig. 2). Variant tasks include the masked
language-modeling task of predicting a masked word in a text
[a.k.a. the cloze task (11)] and predicting the words likely to
occur around a given word (12, 13). Autoencoders (14) can
also be thought of as self-supervised learning systems. Since no
explicit labeling of the data is required, self-supervised learning
is a type of unsupervised learning, but the approach of self-
generating supervised learning objectives differentiates it from
other unsupervised learning techniques such as clustering.

One might expect that a machine-learning model trained to
predict the next word in a text will just be a giant associa-
tional learning machine, with lots of statistics on how often the
word restaurant is followed by kitchen and perhaps some basic
abstracted sequence knowledge such as knowing that adjectives
are commonly followed by nouns in English. It is not at all clear
that such a system can develop interesting knowledge of the lin-
guistic structure of whatever human language the system is trained
on. Indeed, this has been the dominant perspective in linguis-
tics, where language models have long been seen as inadequate
and having no scientific interest, even when their usefulness in
practical engineering applications is grudgingly accepted (15, 16).

Starting in 2018, researchers in natural language process-
ing (NLP) built a new generation of much larger artificial
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implicitly encode rich contextual word semantics and sentence-level grammar
Large Language Models  infer representations that



require formal and commonsense reasoning
Large Language Models  struggle to solve tasks that 
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Abstract
Spatial commonsense, the knowledge about
spatial position and relationship between ob-
jects (like the relative size of a lion and a

girl, and the position of a boy relative to a

bicycle when cycling), is an important part
of commonsense knowledge. Although pre-
trained language models (PLMs) succeed in
many NLP tasks, they are shown to be in-
effective in spatial commonsense reasoning.
Starting from the observation that images are
more likely to exhibit spatial commonsense
than texts, we explore whether models with
visual signals learn more spatial commonsense
than text-based PLMs. We propose a spatial
commonsense benchmark that focuses on the
relative scales of objects, and the positional
relationship between people and objects un-
der different actions. We probe PLMs and
models with visual signals, including vision-
language pretrained models and image synthe-
sis models, on this benchmark, and find that
image synthesis models are more capable of
learning accurate and consistent spatial knowl-
edge than other models. The spatial knowl-
edge from image synthesis models also helps
in natural language understanding tasks that
require spatial commonsense. Code and data
are available at https://github.com/
xxxiaol/spatial-commonsense.

1 Introduction
Spatial perception, the ability to detect the spa-
tial position and to infer the relationship between
visual stimuli (Donnon et al., 2005; Saj and Baris-
nikov, 2015), is basic but important for human
beings (Pellegrino et al., 1984). It is of everyday
use, from understanding the surrounding environ-
ment, like when seeing a woman sitting in a car

with her hands on the steering wheel, we know

she is probably driving, to processing spatial infor-
mation and performing reasoning, like navigating

⇤ Corresponding author.

Figure 1: Texts and images related to lion and cycling.
Images exhibit more explicit spatial knowledge than
texts.

through a dense forest. We regard the knowledge
needed in spatial perception as spatial common-
sense. Humans start to develop spatial perception
and acquire spatial commonsense from infancy, and
apply the commonsense through lifetime (Kuipers
et al., 1990; Poole et al., 2006).

Although text-based Pretrained Language Mod-
els (PLMs) achieve great performance on vari-
ous commonsense reasoning tasks (Davison et al.,
2019; Zhou et al., 2020), they are shown to be
ineffective when dealing with spatial common-
sense. Zhang et al. (2020) and Aroca-Ouellette
et al. (2021) show that current PLMs lack the abil-
ity to reason about object scales. Bhagavatula et al.
(2020) find that BERT (Devlin et al., 2019) under-
performs on instances involving spatial locations.
The struggle of PLMs with spatial commonsense
is partly because spatial commonsense is rarely ex-
pressed explicitly in texts. We may write sentences
like lions are big animals, but we seldom explicitly
mention how big lions are; we also rarely write
about the spatial relationship between a boy and a
bicycle when he is cycling.

Spatial commonsense is exhibited in images
more commonly (Cui et al., 2020). As shown in
Figure 1, the two Wikipedia articles provide little
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Abstract
The problem of designing NLP solvers for
math word problems (MWP) has seen sus-
tained research activity and steady gains in
the test accuracy. Since existing solvers
achieve high performance on the benchmark
datasets for elementary level MWPs contain-
ing one-unknown arithmetic word problems,
such problems are often considered “solved”
with the bulk of research attention moving to
more complex MWPs. In this paper, we re-
strict our attention to English MWPs taught in
grades four and lower. We provide strong ev-
idence that the existing MWP solvers rely on
shallow heuristics to achieve high performance
on the benchmark datasets. To this end, we
show that MWP solvers that do not have ac-
cess to the question asked in the MWP can
still solve a large fraction of MWPs. Sim-
ilarly, models that treat MWPs as bag-of-
words can also achieve surprisingly high accu-
racy. Further, we introduce a challenge dataset,
SVAMP, created by applying carefully chosen
variations over examples sampled from exist-
ing datasets. The best accuracy achieved by
state-of-the-art models is substantially lower
on SVAMP, thus showing that much remains
to be done even for the simplest of the MWPs.

1 Introduction

A Math Word Problem (MWP) consists of a short
natural language narrative describing a state of
the world and poses a question about some un-
known quantities (see Table 1 for some examples).
MWPs are taught in primary and higher schools.
The MWP task is a type of semantic parsing task
where given an MWP the goal is to generate an
expression (more generally, equations), which can
then be evaluated to get the answer. The task is
challenging because a machine needs to extract
relevant information from natural language text as
well as perform mathematical reasoning to solve
it. The complexity of MWPs can be measured
along multiple axes, e.g., reasoning and linguistic

PROBLEM:
Text: Jack had 8 pens and Mary had 5 pens. Jack gave 3
pens to Mary. How many pens does Jack have now?
Equation: 8 - 3 = 5

QUESTION SENSITIVITY VARIATION:
Text: Jack had 8 pens and Mary had 5 pens. Jack gave 3
pens to Mary. How many pens does Mary have now?
Equation: 5 + 3 = 8

REASONING ABILITY VARIATION:
Text: Jack had 8 pens and Mary had 5 pens. Mary gave 3
pens to Jack. How many pens does Jack have now?
Equation: 8 + 3 = 11

STRUCTURAL INVARIANCE VARIATION:
Text: Jack gave 3 pens to Mary. If Jack had 8 pens and
Mary had 5 pens initially, how many pens does Jack have
now?
Equation: 8 - 3 = 5

Table 1: Example of a Math Word Problem along with
the types of variations that we make to create SVAMP.

complexity and world and domain knowledge. A
combined complexity measure is the grade level
of an MWP, which is the grade in which similar
MWPs are taught. Over the past few decades many
approaches have been developed to solve MWPs
with significant activity in the last decade (Zhang
et al., 2020).

MWPs come in many varieties. Among the sim-
plest are the one-unknown arithmetic word prob-
lems where the output is a mathematical expression
involving numbers and one or more arithmetic op-
erators (+,�, ⇤, /). Problems in Tables 1 and 6
are of this type. More complex MWPs may have
systems of equations as output or involve other
operators or may involve more advanced topics
and specialized knowledge. Recently, researchers
have started focusing on solving such MWPs, e.g.
multiple-unknown linear word problems (Huang
et al., 2016a), geometry (Sachan and Xing, 2017)
and probability (Amini et al., 2019), believing
that existing work can handle one-unknown arith-
metic MWPs well (Qin et al., 2020). In this paper,
we question the capabilities of the state-of-the-art
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Abstract
The problem of designing NLP solvers for
math word problems (MWP) has seen sus-
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the test accuracy. Since existing solvers
achieve high performance on the benchmark
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Abstract

Building on Petroni et al. (2019), we pro-
pose two new probing tasks analyzing fac-
tual knowledge stored in Pretrained Language
Models (PLMs). (1) Negation. We find
that PLMs do not distinguish between negated
(“Birds cannot [MASK]”) and non-negated
(“Birds can [MASK]”) cloze questions. (2)
Mispriming. Inspired by priming methods in
human psychology, we add “misprimes” to
cloze questions (“Talk? Birds can [MASK]”).
We find that PLMs are easily distracted by
misprimes. These results suggest that PLMs
still have a long way to go to adequately learn
human-like factual knowledge.

1 Introduction

PLMs like Transformer-XL (Dai et al., 2019),
ELMo (Peters et al., 2018) and BERT (Devlin et al.,
2019) have emerged as universal tools that capture
a diverse range of linguistic and factual knowledge.
Recently, Petroni et al. (2019) introduced LAMA
(LAnguage Model Analysis) to investigate whether
PLMs can recall factual knowledge that is part of
their training corpus. Since the PLM training ob-
jective is to predict masked tokens, question an-
swering (QA) tasks can be reformulated as cloze
questions. For example, “Who wrote ‘Dubliners’?”
is reformulated as “[MASK] wrote ‘Dubliners’.” In
this setup, Petroni et al. (2019) show that PLMs out-
perform automatically extracted knowledge bases
on QA. In this paper, we investigate this capability
of PLMs in the context of (1) negation and what
we call (2) mispriming.

(1) Negation. To study the effect of negation
on PLMs, we introduce the negated LAMA dataset.
We insert negation elements (e.g., “not”) in LAMA
cloze questions (e.g., “The theory of relativity was
not developed by [MASK].”) – this gives us posi-
tive/negative pairs of cloze questions.

Querying PLMs with these pairs and comparing
the predictions, we find that the predicted fillers
have high overlap. Models are equally prone to
generate facts (“Birds can fly”) and their incor-
rect negation (“Birds cannot fly”). We find that
BERT handles negation best among PLMs, but it
still fails badly on most negated probes. In a second
experiment, we show that BERT can in principle
memorize both positive and negative facts correctly
if they occur in training, but that it poorly gener-
alizes to unseen sentences (positive and negative).
However, after finetuning, BERT does learn to cor-
rectly classify unseen facts as true/false.

(2) Mispriming. We use priming, a standard
experimental method in human psychology (Tul-
ving and Schacter, 1990) where a first stimulus
(e.g., “dog”) can influence the response to a sec-
ond stimulus (e.g., “wolf” in response to “name
an animal”). Our novel idea is to use priming
for probing PLMs, specifically mispriming: we
give automatically generated misprimes to PLMs
that would not mislead humans. For example, we
add “Talk? Birds can [MASK]” to LAMA where
“Talk?” is the misprime. A human would ignore
the misprime, stick to what she knows and produce
a filler like “fly”. We show that, in contrast, PLMs
are misled and fill in “talk” for the mask.

We could have manually generated more natural
misprimes. For example, misprime “regent of Anti-
och” in “Tancred, regent of Antioch, played a role
in the conquest of [MASK]” tricks BERT into chos-
ing the filler “Antioch” (instead of “Jerusalem”).
Our automatic misprimes are less natural, but au-
tomatic generation allows us to create a large mis-
prime dataset for this initial study.

Contribution. We show that PLMs’ ability to
learn factual knowledge is – in contrast to human
capabilities – extremely brittle for negated sen-
tences and for sentences preceded by distracting
material (i.e., misprimes). Data and code will be
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ABSTRACT

Despite widespread use of LLMs as conversational agents, evaluations of perfor-
mance fail to capture a crucial aspect of communication: interpreting language
in context. Humans interpret language using beliefs and prior knowledge about
the world. For example, we intuitively understand the response “I wore gloves”
to the question “Did you leave fingerprints?” as meaning “No”. To investigate
whether LLMs have the ability to make this type of inference, known as an impli-
cature, we design a simple task and evaluate widely used state-of-the-art models.
We find that, despite only evaluating on utterances that require a binary inference
(yes or no), most perform close to random. Models adapted to be “aligned with
human intent” perform much better, but still show a significant gap with human
performance. We present our findings as the starting point for further research into
evaluating how LLMs interpret language in context and to drive the development
of more pragmatic and useful models of human discourse.

1 INTRODUCTION

User: “Have you seen my phone?”
InstructGPT: “Yes, I have seen your phone.”

InstructGPT’s response1 is a perfectly fine answer to the question, but a human might answer dif-
ferently. They might respond “it’s in your bag," bypassing the obvious follow-up question (“where
is it?”). Giving such a helpful and efficient answer is an example of pragmatic language usage that
goes beyond the semantic meaning of utterances. Meaning is not only determined by a combination
of words, but also context, beliefs, and social institutions (Grice, 1975; Huang, 2017). Consider
another exchange where Esther asks her friend Juan “Can you come to my party on Friday?” and
Juan responds “I have to work.”. We resolve Juan’s response into a decline by using the contextual
commonsense knowledge that having to work on a Friday night precludes attendance. Both these ex-
changes contain an implicature—utterances that convey something other than their literal meaning2.
Implicatures illustrate how context contributes to meaning; distinguishing writing and speaking from
communicating (Green, 1996). We cannot fully understand utterances without understanding their
implications, nor can a computational model. Indeed, the term “communication” presupposes the
speaker’s implications are understood by the addressee. Being able to resolve seemingly completely
novel implicatures and—more broadly—engage in pragmatic understanding constitutes an essential
and ubiquitous aspect of our every day usage of language.

Large language models (LLMs) have demonstrated remarkable ability on a variety of downstream
tasks such as planning (Huang et al., 2022b), commonsense reasoning (Kojima et al., 2022), infor-
mation retrieval (Lewis et al., 2020; Kim et al., 2022) and code completion (Austin et al., 2021;
Biderman & Raff, 2022), to name just a few. When finetuned with human feedback, LLMs ob-
tain higher ratings on desiderata like helpfulness (Ouyang et al., 2022; Bai et al., 2022), and are
proposed as conversational agents (Thoppilan et al., 2022). Despite the widespread use and deploy-
ment of LLMs as conversational agents, there has been limited evaluation of their ability to navigate
contextual commonsense knowledge.

1Appendix A contains details on how this answer was obtained from InstructGPT-3.
2In Appendix B we present a comprehensive introduction to implicature.
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Abstract
Logical reasoning is needed in a wide range
of NLP tasks. Can a BERT model be trained
end-to-end to solve logical reasoning problems
presented in natural language? We attempt
to answer this question in a confined problem
space where there exists a set of parameters
that perfectly simulates logical reasoning. We
make observations that seem to contradict each
other: BERT attains near-perfect accuracy on
in-distribution test examples while failing to
generalize to other data distributions over the
exact same problem space. Our study provides
an explanation for this paradox: instead of
learning to emulate the correct reasoning func-
tion, BERT has, in fact, learned statistical fea-
tures that inherently exist in logical reasoning
problems. We also show that it is infeasible to
jointly remove statistical features from data, il-
lustrating the difficulty of learning to reason in
general. Our result naturally extends to other
neural models (e.g. T5) and unveils the funda-
mental difference between learning to reason
and learning to achieve high performance on
NLP benchmarks using statistical features.

1 Introduction
Logical reasoning is needed in a wide range
of NLP tasks, including natural language infer-
ence (NLI) (Williams et al., 2018; Bowman et al.,
2015), question answering (QA) (Rajpurkar et al.,
2016; Yang et al., 2018) and common-sense reason-
ing (Zellers et al., 2018; Talmor et al., 2019). The
ability to draw conclusions based on given facts and
rules is essential to solving these tasks.1 Though
NLP models, empowered by the Transformer neu-
ral architecture (Vaswani et al., 2017), can achieve
high performance on task-specific datasets, it is
unclear whether they are “reasoning” following the
rules of logic. A research question naturally arises:
can neural models be trained end-to-end to conduct
logical reasoning in natural language?

1A.k.a., deductive reasoning; in this paper, we do not con-
sider inductive reasoning, where rules need to be learned.

Facts:
Alice is fast.
Alice is normal.

Rules:
If Alice is fast and smart, then Alice is bad.
If Alice is normal, then Alice is smart.
If Alice is normal and happy, then Alice is sad.

Query 1: Alice is bad.                               [Answer: True]
Query 2: Alice is sad.                               [Answer: False]

Figure 1: A confined problem space (SimpleLogic)
consisting of exponentially many (⇡ 10360) logical rea-
soning problems; dots and triangles denote examples
sampled from two different distributions over the same
problem space.

Following prior work, we attempt to answer this
question by training and testing a neural model (e.g.
BERT (Devlin et al., 2019)) on a confined prob-
lem space (see Fig. 1 and Sec. 2) consisting of logi-
cal reasoning problems written in English (Johnson
et al., 2017; Sinha et al., 2019). Yet, we observe
evidences that seemingly lead to a contradiction.

On the one hand, echoing the findings of prior
work (Clark et al., 2020; Talmor et al., 2020), we
observe evidences that seem to imply that neural
models can learn to reason (i.e. reliably emulate
the correct reasoning function): (E1) examples in
the problem space only test model’s reasoning abil-
ity: they have no language variance and require
no prior knowledge; (E2) we prove by construc-
tion that the BERT model has enough capacity to
represent the correct reasoning function (Sec 2.2);
(E3) the BERT model can be trained to achieve
near-perfect test accuracy on data distributions cov-
ering the whole problem space.

On the other hand, we observe a contradictory
phenomenon: the models attaining near-perfect
accuracy on one data distribution do not general-
ize to other distributions within the same problem
space (Sec. 3). Since the correct reasoning function
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Abstract
A characteristic feature of human semantic cog-
nition is its ability to not only store and retrieve
the properties of concepts observed through
experience, but to also facilitate the inheri-
tance of properties (can breathe) from superor-
dinate concepts (ANIMAL) to their subordinates
(DOG)—i.e. demonstrate property inheritance.
In this paper, we present COMPS, a collection
of English minimal pair sentences that jointly
tests pre-trained language models (PLMs) on
their ability to attribute properties to concepts
and their ability to demonstrate property inheri-
tance behavior. Analyses of 22 different PLMs
on COMPS reveal that they can easily distin-
guish between concepts on the basis of a prop-
erty when they are trivially different, but find
it relatively difficult when concepts are related
on the basis of nuanced knowledge represen-
tations. Furthermore, we find that PLMs can
show behaviors suggesting successful property
inheritance in simple contexts, but fail in the
presence of distracting information, which de-
creases the performance of many models some-
times even below chance. This lack of robust-
ness in demonstrating simple reasoning raises
important questions about PLMs’ capacity to
make correct inferences even when they appear
to possess the prerequisite knowledge.

1 Introduction

The ability to learn, update and deploy one’s knowl-
edge about concepts (ROBIN, CHAIR) and their
properties (can fly, can be sat on), observed dur-
ing everyday experience is fundamental to human
semantic cognition (Murphy, 2002; Rogers and Mc-
Clelland, 2004; Rips et al., 2012). Knowledge of
a concept’s properties, combined with the ability
to infer the IsA relation (Sloman, 1998; Murphy,
2003) leads to an important behavior known as
property inheritance (Quillian, 1967; Smith and
Estes, 1978; Murphy, 2002), where subordinates
of a concept inherit its properties. For instance,
one is likely to infer that an entity called luna can

meow, has a tail, is a mammal, etc., even if all
they know is that it is a cat. The close connection
between a word’s meaning and its conceptual repre-
sentation makes these abilities crucial to language
understanding (Murphy, 2002; Lake and Murphy,
2021), making it critical for computational mod-
els of language processing to also exhibit behav-
ior consistent with these capacities. Indeed, mod-
ern pre-trained language models (PLMs; Devlin
et al., 2019; Brown et al., 2020, etc.) have made
impressive empirical strides in eliciting general
knowledge about real world concepts and entities
(Petroni et al., 2019; Weir et al., 2020, i.a.), as well
as in demonstrating isomorphism with real world
abstractions like direction and color (Abdou et al.,
2021; Patel and Pavlick, 2022), often times without
even having been explicitly trained to do so. At
the same time, their ability to robustly demonstrate
such capacities has recently been called to question,
owing to failures due to reporting bias (Gordon and
Van Durme, 2013; Shwartz and Choi, 2020), lack
of consistency (Elazar et al., 2021; Ravichander
et al., 2020), and sensitivity to lexical cues (Kass-
ner and Schütze, 2020; Misra et al., 2020; Pandia
and Ettinger, 2021).

In this work, we cast further light on PLMs’
ability to robustly demonstrate knowledge about
concepts and their properties. To this end, we intro-
duce Conceptual Minimal Pair Sentences (COMPS),
a collection of English minimal pair sentences,
where each pair attributes a property (can fly) to
two noun concepts: one which actually possesses
the property (ROBIN), and one which does not
(PENGUIN). Following standard practice in the
minimal pairs evaluation paradigm (Warstadt et al.,
2020, etc.), we test whether PLMs prefer sentence
stimuli expressing correct property knowledge over
those expressing incorrect ones. COMPS can be de-
composed into three subsets, each containing stim-
uli that progressively isolate deeper understanding
of the task of attributing properties to concepts,
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tests pre-trained language models (PLMs) on
their ability to attribute properties to concepts
and their ability to demonstrate property inheri-
tance behavior. Analyses of 22 different PLMs
on COMPS reveal that they can easily distin-
guish between concepts on the basis of a prop-
erty when they are trivially different, but find
it relatively difficult when concepts are related
on the basis of nuanced knowledge represen-
tations. Furthermore, we find that PLMs can
show behaviors suggesting successful property
inheritance in simple contexts, but fail in the
presence of distracting information, which de-
creases the performance of many models some-
times even below chance. This lack of robust-
ness in demonstrating simple reasoning raises
important questions about PLMs’ capacity to
make correct inferences even when they appear
to possess the prerequisite knowledge.

1 Introduction

The ability to learn, update and deploy one’s knowl-
edge about concepts (ROBIN, CHAIR) and their
properties (can fly, can be sat on), observed dur-
ing everyday experience is fundamental to human
semantic cognition (Murphy, 2002; Rogers and Mc-
Clelland, 2004; Rips et al., 2012). Knowledge of
a concept’s properties, combined with the ability
to infer the IsA relation (Sloman, 1998; Murphy,
2003) leads to an important behavior known as
property inheritance (Quillian, 1967; Smith and
Estes, 1978; Murphy, 2002), where subordinates
of a concept inherit its properties. For instance,
one is likely to infer that an entity called luna can

meow, has a tail, is a mammal, etc., even if all
they know is that it is a cat. The close connection
between a word’s meaning and its conceptual repre-
sentation makes these abilities crucial to language
understanding (Murphy, 2002; Lake and Murphy,
2021), making it critical for computational mod-
els of language processing to also exhibit behav-
ior consistent with these capacities. Indeed, mod-
ern pre-trained language models (PLMs; Devlin
et al., 2019; Brown et al., 2020, etc.) have made
impressive empirical strides in eliciting general
knowledge about real world concepts and entities
(Petroni et al., 2019; Weir et al., 2020, i.a.), as well
as in demonstrating isomorphism with real world
abstractions like direction and color (Abdou et al.,
2021; Patel and Pavlick, 2022), often times without
even having been explicitly trained to do so. At
the same time, their ability to robustly demonstrate
such capacities has recently been called to question,
owing to failures due to reporting bias (Gordon and
Van Durme, 2013; Shwartz and Choi, 2020), lack
of consistency (Elazar et al., 2021; Ravichander
et al., 2020), and sensitivity to lexical cues (Kass-
ner and Schütze, 2020; Misra et al., 2020; Pandia
and Ettinger, 2021).

In this work, we cast further light on PLMs’
ability to robustly demonstrate knowledge about
concepts and their properties. To this end, we intro-
duce Conceptual Minimal Pair Sentences (COMPS),
a collection of English minimal pair sentences,
where each pair attributes a property (can fly) to
two noun concepts: one which actually possesses
the property (ROBIN), and one which does not
(PENGUIN). Following standard practice in the
minimal pairs evaluation paradigm (Warstadt et al.,
2020, etc.), we test whether PLMs prefer sentence
stimuli expressing correct property knowledge over
those expressing incorrect ones. COMPS can be de-
composed into three subsets, each containing stim-
uli that progressively isolate deeper understanding
of the task of attributing properties to concepts,
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Abstract

Recent advances in large language models (LLMs) have transformed the field
of natural language processing (NLP). From GPT-3 to PaLM, the state-of-the-
art performance on natural language tasks is being pushed forward with every
new large language model. Along with natural language abilities, there has been
a significant interest in understanding whether such models exhibit reasoning
capabilities with the use of reasoning benchmarks. However, even though results
are seemingly positive, these benchmarks prove to be simplistic in nature and the
performance of LLMs on these benchmarks cannot be used as evidence to support,
many a times outlandish, claims being made about LLMs’ reasoning capabilities.
Further, these only represent a very limited set of simple reasoning tasks and we
need to look at more sophisticated reasoning problems if we are to measure the true
limits of such LLM-based systems. Motivated by this, we propose an extensible
assessment framework to test the capabilities of LLMs on reasoning about actions
and change, a central aspect of human intelligence. We provide multiple test cases
that are more involved than any of the previously established benchmarks and
each test case evaluates a different aspect of reasoning about actions and change.
Results on GPT-3 (davinci), Instruct-GPT3 (text-davinci-002) and BLOOM (176B),
showcase subpar performance on such reasoning tasks.

1 Introduction

It would be no exaggeration to say that transformer-based large language models (LLMs) have
revolutionized the field of natural language processing (NLP). Kicked off by the advances presented
by the GPT-x models developed by OpenAI [23], these types of language models currently provide
state-of-the-art performance in many of the standard NLP tasks. The latest version of the system,
GPT-3 [4] uses about 175 billion parameters and was trained over an extremely large natural language
training corpus, consisting of, among other things, excerpts from Wikipedia. Triggered by GPT-3, a
plethora of other large language models, which are different variants of the transformer architecture
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Large Language Models  struggle to solve tasks that 

require formal and commonsense reasoning



Large Language Models  can be guided to generate

reasoning explicitly: Chain-of-Thought



Large Language Models  can be guided to generate
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Abstract

We explore how generating a chain of thought—a series of intermediate reasoning
steps—significantly improves the ability of large language models to perform
complex reasoning. In particular, we show how such reasoning abilities emerge
naturally in sufficiently large language models via a simple method called chain-of-
thought prompting, where a few chain of thought demonstrations are provided as
exemplars in prompting.
Experiments on three large language models show that chain-of-thought prompting
improves performance on a range of arithmetic, commonsense, and symbolic
reasoning tasks. The empirical gains can be striking. For instance, prompting a
PaLM 540B with just eight chain-of-thought exemplars achieves state-of-the-art
accuracy on the GSM8K benchmark of math word problems, surpassing even
finetuned GPT-3 with a verifier.

A: The cafeteria had 23 apples originally. They used 
20 to make lunch. So they had 23 - 20 = 3. They 
bought 6 more apples, so they have 3 + 6 = 9. The 
answer is 9.

Chain-of-Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

A: The answer is 27.

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of 
tennis balls. Each can has 3 tennis balls. How many 
tennis balls does he have now? 

A: Roger started with 5 balls. 2 cans of 3 tennis balls 
each is 6 tennis balls. 5 + 6 = 11. The answer is 11. 

Q: The cafeteria had 23 apples. If they used 20 to 
make lunch and bought 6 more, how many apples 
do they have?

Model Input

Model Output Model Output

Model Input

Figure 1: Chain-of-thought prompting enables large language models to tackle complex arithmetic,
commonsense, and symbolic reasoning tasks. Chain-of-thought reasoning processes are highlighted.
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Abstract

When answering a question, humans utilize the information available across differ-
ent modalities to synthesize a consistent and complete chain of thought (CoT). This
process is normally a black box in the case of deep learning models like large-scale
language models. Recently, science question benchmarks have been used to diag-
nose the multi-hop reasoning ability and interpretability of an AI system. However,
existing datasets fail to provide annotations for the answers, or are restricted to
the textual-only modality, small scales, and limited domain diversity. To this end,
we present Science Question Answering (SCIENCEQA), a new benchmark that
consists of ! 21k multimodal multiple choice questions with diverse science topics
and annotations of their answers with corresponding lectures and explanations. We
further design language models to learn to generate lectures and explanations as the
chain of thought (CoT) to mimic the multi-hop reasoning process when answering
SCIENCEQA questions. SCIENCEQA demonstrates the utility of CoT in language
models, as CoT improves the question answering performance by 1.20% in few-
shot GPT-3 and 3.99% in fine-tuned UnifiedQA. We also explore the upper bound
for models to leverage explanations by feeding those in the input; we observe that
it improves the few-shot performance of GPT-3 by 18.96%. Our analysis further
shows that language models, similar to humans, benefit from explanations to learn
from fewer data and achieve the same performance with just 40% of the data.1

1 Introduction

A long-standing goal of AI systems is to act reliably and learn complex tasks efficiently like human
beings. In the process of reliable decision making, humans follow an explicit chain-of-thought (CoT)
reasoning process that is typically expressed as an explanation. However, machine learning models
are trained mostly using a large number of input-output examples to perform a specific task. These
black-box models only generate the final decision without reliably revealing the underlying reasoning
process. Not surprisingly, it is unclear if they understand the task and can generalize even though
they perform well on the benchmark. On the other hand, humans are able to learn from instructions
or explanations from past experience and generalize them to novel and unseen problems. This helps
them learn more quickly with fewer data. In this work, we explore if machines can be endowed with
such reasoning abilities in the context of science-based question answering.

Recently, science problem solving benchmarks [18] have been used to diagnose the multi-hop
reasoning ability and interpretability of AI systems. To answer science questions, a model needs to

1The data and code are available at https://scienceqa.github.io.
Work was partially done while Pan Lu and Swaroop Mishra were interns at AI2.
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Abstract

Despite the success of large language mod-
els (LLMs) in various natural language pro-
cessing (NLP) tasks, the stored knowledge
in these models may inevitably be incom-
plete, out-of-date, or incorrect. This mo-
tivates the need to utilize external knowl-
edge to assist LLMs. Unfortunately, current
methods for incorporating external knowl-
edge often require additional training or
Þne-tuning, which can be costly and may
not be feasible for LLMs. To address this
issue, we propose a novel post-processing
approach,rethinking with retrieval (RR),
which retrieves relevant external knowledge
based on the decomposed reasoning steps
obtained from the chain-of-thought (CoT)
prompting. This lightweight approach does
not require additional training or Þne-tuning
and is not limited by the input length of
LLMs. We evaluate the effectiveness of RR
through extensive experiments with GPT-3
on three complex reasoning tasks: common-
sense reasoning, temporal reasoning, and
tabular reasoning. Our results show that RR
can produce more faithful explanations and
improve the performance of LLMs.1

1 Introduction

Large language models (LLMs) have shown
exceptional performance across various tasks
through in-context learning without task-speciÞc
training or Þne-tuning (Brown et al., 2020;
Chowdhery et al., 2022; Zhang et al., 2022;
Ouyang et al., 2022). Recent progress in prompt-
ing (Wei et al., 2022; Zhou et al., 2022; Kojima
et al., 2022) and decoding (Wang et al., 2022) has
made it feasible for LLMs to tackle tasks that de-
mand complex reasoning.

! Part of this work was done while the author was at the
University of Pennsylvania.

1Our code is publicly available athttps://github.
com/HornHehhf/RR .
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Figure 1: An overview of three approaches for using
LLMs: (a) Standard prompting for generating a pre-
diction in response to a query. (b) Chain-of-thought
prompting for generating both an explanation and a
prediction in response to a query. (c) Rethinking with
retrieval, our proposed approach for using the decom-
posed reasoning steps obtained from chain-of-thought
prompting to retrieve relevant external knowledge for
LLMs, leading to more faithful explanations and im-
proved predictions in response to a query.

However, the knowledge stored in LLMs might
inevitably be incomplete, out-of-date, or incorrect.
As a result, external sources of knowledge, such
as Wikipedia, may be essential for the success-
ful deployment of LLMs for real-world applica-
tions. Previously, people tried to utilize knowl-
edge for smaller language models (LMs), such
as T5 (Raffel et al., 2020), BERT (Devlin et al.,
2019), and RoBERTa (Liu et al., 2019). However,
these methods often require additional training or
Þne-tuning, which can be costly and thus imprac-
tical for LLMs.

In this paper, we present a post-processing
approach calledrethinking with retrieval (RR)
for utilizing external knowledge in LLMs. Our
method begins by using the chain-of-thought
(CoT) prompting method (Wei et al., 2022) to gen-
erate a diverse set of reasoning paths, as described
in Wang et al.(2022). We then use each rea-
soning step in those paths to retrieve relevant ex-
ternal knowledge, which enables RR to provide
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2019), and RoBERTa (Liu et al., 2019). However,
these methods often require additional training or
Þne-tuning, which can be costly and thus imprac-
tical for LLMs.

In this paper, we present a post-processing
approach calledrethinking with retrieval (RR)
for utilizing external knowledge in LLMs. Our
method begins by using the chain-of-thought
(CoT) prompting method (Wei et al., 2022) to gen-
erate a diverse set of reasoning paths, as described
in Wang et al.(2022). We then use each rea-
soning step in those paths to retrieve relevant ex-
ternal knowledge, which enables RR to provide
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Abstract

While Pre-trained Language Models (PLMs)
internalize a great amount of world knowl-
edge, they have been shown incapable of re-
calling these knowledge to solve tasks requir-
ing complex & multi-step reasoning. Similar
to how humans develop a Òchain of thoughtÓ
for these tasks, how can we equip PLMs with
such abilities? In this work, we explore an
iterative prompting framework, a new prompt-
ing paradigm which progressively elicits rele-
vant knowledge from PLMs for multi-step in-
ference. We identify key limitations of existing
prompting methods, namely they are either re-
stricted to queries with a single identiÞable re-
lation/predicate, or being agnostic to input con-
texts, which makes it difÞcult to capture vari-
abilities across different inference steps. We
propose an iterative context-aware prompter,
which addresses these limitations by learning
to dynamically synthesize prompts conditioned
on the current stepÕs contexts. Experiments on
three datasets involving multi-step reasoning
show the effectiveness of the iterative scheme
and the context-aware prompter design.1

1 Introduction

Humans can develop a Òchain of thoughtÓ for com-
plex decision making. For example, when asked
the question (Q) shown in Figure1, which involves
composition, an important type of multi-step rea-
soning, humans apply two consecutive steps to de-
rive the Þnal answer: 1) Þnd ÒfatherÓ of the topic
entity ÒGwilym Lloyd GeorgeÓ (C1); 2) Þnd Òbirth-
placeÓ of the entity returned in the Þrst step (C2).

Recently, large-scale pre-trained language mod-
els (PLMs) have been shown capable of internal-
izing a great amount of simple factual knowledge
such asC1 andC2, yielding competitive perfor-
mance on a range of knowledge-intensive tasks
without resorting to any external knowledge source

1Our source code is available athttps://github.
com/sunlab-osu/IterPrompt .

Figure 1: Our Iterative Prompting approach (on the
right), compared with Standard Probing (on the left). In
Standard Probing, a question is directly fed to the PLM
to output the Þnal answer, which could work for simple
factual questions but fails for complex questions that
require multi-step reasoning. In contrast, we augment
the PLM with a Prompter, which learns to iteratively
prompt the PLM to recall a series of knowledge and
derive a Òchain of thoughtÓ.

(Petroni et al., 2019; Shin et al., 2020; Zhong et al.,
2021; Roberts et al., 2020; Lee et al., 2020). How-
ever, work such as (Talmor et al., 2020a; Kassner
et al., 2020; Rae et al., 2021) reveals that PLMs
face difÞculties incomplex, multi-stepreasoning.
For example, they struggle with answering complex
questions likeQ without using external sources, no
matter whether they are Þne-tuned based on QA
pairs or simply prompted to produce the answer
(where even if they have memorizedC1 andC2).

In this paper, we study the following question:
How to shepherd a PLM torecall a series of stored
knowledge(e.g.,C1 andC2) that is necessary for
multi-step inference (e.g., answeringQ), analogous
to how humans develop a Òchain of thoughtÓ for
complex decision making?

A direct way would be to Þne-tune the PLM to
generate the series of knowledge all at once (as-
suming such supervision is available), but soon
one realizes the practical issue in this approach:
PLMs which internalize a great amount of knowl-
edge are inevitably large in scale, and Þne-tuning
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(a) HSN(50, 5)

(b) HSN(50, 20)

Figure 1: Schema distributions inferred from each category of the Yahoo dataset, for HSN(50,L )
with L = { 5, 20} . The node positions in the Þgure are consistent among labels and were computed
using a force-directed embedding of the global graphG.
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