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Is graph structure even relevant in classification tasks of benchmark datasets?

• We compare established graph kernels to a kernel which disregards all graph structure.

• The No-Graph kernel (NoG) considers graphs as a multiset of vertex and edge labels.
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How does NoG perform compared to more sophisticated graph kernels?

Tested kernels:
NoG - No-Graph baseline kernel
psf - Probabilistic frequent subtree kernel [5]
bpsf - Boosted probabilistic frequent subtree kernel [5]
fsg - Frequent subgraph kernel based on FSG [7]
cp - Cyclic pattern kernel [2]
gs - Graphlet sampling kernel [4]
sp - Shortest path kernel [1]
rw - Random walk kernel [6]
wl - Weisfeiler Lehman kernel [3]

Evaluation details:
The predictive performance was measured in terms of
accuracy obtained by SVMs using a 10-fold cross-validation.
The kernel and SVM parameters were identified using an ex-
tensive grid search.

Legend:
x - no significant difference to NoG
x - kernel performs significantly worse than NoG
x - kernel performs significantly better than NoG
x - result unavailable due to time/memory constraints

Observations & Interpretations:

• No tested graph kernel achieves results significantly bet-
ter than the baseline on more than a few datasets.

• Graph kernels can hardly prove their functionality on
available datasets.

• Utilizing the graphs’ structure in graph kernels does not
significantly improve the classification accuracy.

• Graph structure may not even be relevant to perform
well on a majority of benchmark datasets.
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What do the results suggest?

• Most available datasets aren’t suitable for benchmarking purposes.

• New benchmark datasets that highlight the power of graph kernels are necessary.

• Graph kernel baselines are imperative in order to put graph kernel performances
into context.
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