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Distance Estimation for Social Search
Three-Hop Distance Estimation in Social Graphs

• Social graphs may have millions of vertices and billions of edges
– Running a shortest path algorithm for each query at runtime is infeasible
(runtime constraints)

– Computing and storing all distances in advance is infeasible (space
constraints)

• Distance signals are one factor among many others in social search

– Exact distances are not always required
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Three-Hop Distance Estimation in Social Graphs

• Social graphs may have millions of vertices and billions of edges
– Running a shortest path algorithm for each query at runtime is infeasible
(runtime constraints)

– Computing and storing all distances in advance is infeasible (space
constraints)

• Distance signals are one factor among many others in social search
– Exact distances are not always required

Problem: For a graph G = (V,E), compute a data structure of size
O(|V|+ |E|) that allows fast approximate answers to distance queries for
arbitrary pairs of vertices s, t ∈ V.



Pascal Welke – IEEE BigData 2016 4/14

Classical Approach: Two-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs



Pascal Welke – IEEE BigData 2016 4/14

Classical Approach: Two-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs

s t

d(s, t) ≤ ∞



Pascal Welke – IEEE BigData 2016 4/14

Classical Approach: Two-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs

s t

3 5

d(s, t) ≤ 8



Pascal Welke – IEEE BigData 2016 4/14

Classical Approach: Two-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs

s t

3 3

d(s, t) ≤ 6



Pascal Welke – IEEE BigData 2016 4/14

Classical Approach: Two-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs

s t

4 2

d(s, t) ≤ 6



Pascal Welke – IEEE BigData 2016 4/14

Classical Approach: Two-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs

s t
1 4

d(s, t) ≤ 5



Pascal Welke – IEEE BigData 2016 5/14

Problems with Two-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs

• We have to store distances
from all landmarks to all
vertices

• We need landmarks close to
shortest paths for any given
query

• The stored data needs to grow
superlinearly for good results
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Benefits & Drawbacks of Three-Hop Landmarks
Three-Hop Distance Estimation in Social Graphs

Pros:
• Close landmarks have a higher
likelyhood to be close to
shortest paths

• We can have up to
√
|V|

landmarks in a O(|V|) space
data structure

• A small number of local
landmarks suffices

Cons:
• Going over two landmarks
gives less tight bounds

• Algorithms and data structures
get more complicated
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Which Approach is Better?
Three-Hop Distance Estimation in Social Graphs

Two-Hop
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Three-Hop Distance Estimation in Social Graphs

Compressed Size vs. Estimation Error
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– Use relative encoding

– less than two bits/distance
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Landmark-Landmark Distances
– Random access ⇒ fixed lenght encoding

Single Row Compression

v1 → [(l11 ,1), . . . , (l1k ,2)]
v2 → [(l21 ,1), . . . , (l2k ,2)]

...
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v1 → [(2,2), (10,1), (11,3)]

– sort by id

v1 → [(2,2), (+8,1), (+1,3)]

– store gaps

– Rice coding

Neighbor List Compression

– Similarly, encode vertex information as diff
to neighbor

– Take care of changing local landmarks
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Experimental Evaluation
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• Evaluation on three Social Graphs

• Here: loc-gowalla 197k vertices, 950k edges, diameter 16
• Lots of parameters:

– How to select landmarks globally and locally?
– How many local / global landmarks?
– Which queries are interesting?
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Compression Schemes
Three-Hop Distance Estimation in Social Graphs
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Space vs. Average Error
Three-Hop Distance Estimation in Social Graphs
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Three-Hop Distance Estimation in Social Graphs

• Three-hop landmarks have an asymptotic advantage

• They achieve a modest improvement over two-hop landmarks
• Sensible Compression makes a huge difference



Pascal Welke – IEEE BigData 2016 14/14

Conclusion
Three-Hop Distance Estimation in Social Graphs

• Three-hop landmarks have an asymptotic advantage
• They achieve a modest improvement over two-hop landmarks

• Sensible Compression makes a huge difference



Pascal Welke – IEEE BigData 2016 14/14

Conclusion
Three-Hop Distance Estimation in Social Graphs

• Three-hop landmarks have an asymptotic advantage
• They achieve a modest improvement over two-hop landmarks
• Sensible Compression makes a huge difference


