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A Small Dataset
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Basically, | drink outside whenever there is
no lockdown and it is not raining.

We see only a random training subset, so an
algorithm might come to a different conclu-

sion.
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Motivation

pet Features

® Decision trees are great o
— interpretable by humans
— fast to train and apply * Q

— tend to overfit

® Ensembles (i.e. Random Forests) reduce
variance o &

— larger model size }é Q ?\( %:%

— less interpretable (due to larger size)

® How can we retain the benefits of random * &2
forests and decision trees?

— the trees in a random forest are not independent @ ®
— arguably, common structures might result from
the underlying learning problem
Let's learn from random forests to identify a relevant
smaller trained random forest i
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A Random Forest on Our Dataset
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® |et's train a random forest with 20 * &2 * %

trees on this training data
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Let's Look at these Trees

® Three trees are found multiple times 10x 5 3%

® Substructures occur even more
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We will use frequent subtrees to build new ©

(smaller) ensemble models. }é &2 * %
@ ®
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Technical Issues

) %
® Substructures may be incomplete % #
— We need to add leaves ® }{ %
[ ] L ]
) o
® Substructures see different data }é Q S
— We cannot use the leaf labels }Z }Zg
@ @ [ ] [ ]
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Random Forests are Representation Learning + Linear Mode|

Decision Snippet Features

T (o @ & x) o
/_ x Decision Snippet Features
/{:}\ Training Process
o % 1. Train Random Forest on Data
/\‘. /\. 2. Mine Decision Snippets
[0J[1][0][0] fr(x) € {0,1}* 3. Transform Data to Decision
Snippet Feature space
parameters pr ?p _ p. )
A 4. Train a linear classifier
y1(x) = (fr(x), p1) =

v
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Conclusion

e Decision Snippet Features are based on regularities in random forests
® They work well

— Size reductions up to orders of magnitude
— comparable predictive performance

Check out our paper!
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